Sum of Reciprocals of Divisors equals Abundancy Index
Jump to navigation
Jump to search
Theorem
Let $n$ be a positive integer.
Let $\map {\sigma_1} n$ denote the divisor sum function of $n$.
Then:
- $\ds \sum_{d \mathop \divides n} \frac 1 d = \frac {\map {\sigma_1} n} n$
where $\dfrac {\map {\sigma_1} n} n$ is the abundancy index of $n$.
Proof
\(\ds \sum_{d \mathop \divides n} \frac 1 d\) | \(=\) | \(\ds \sum_{d \mathop \divides n} \frac 1 {\paren {\frac n d} }\) | Sum Over Divisors Equals Sum Over Quotients | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 n \sum_{d \mathop \divides n} d\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\map {\sigma_1} n} n\) | Definition of Divisor Sum Function |
$\blacksquare$