Squares Ending in n Occurrences of m-Digit Pattern
Theorem
Suppose there exists some integer $x$ such that $x^2$ ends in some $m$-digit pattern ending in an odd number not equal to $5$ and is preceded by another odd number, i.e.:
- $\exists x \in \Z: x^2 \equiv \sqbrk {1 a_1 a_2 \cdots a_m} \pmod {2 \times 10^m}$
where $a_m$ is odd, $a_m \ne 5$ and $m \ge 1$.
Then for any $n \ge 1$, there exists some integer with not more than $m n$-digits such that its square ends in $n$ occurrences of the $m$-digit pattern.
Corollary
If such a pattern ends in an even number, one must divide the pattern by $4$ until it becomes an odd number (keeping every leading zero), and check if the above condition is satisfied.
If it is, there is a number less than $4^s 10^{m n}$ with its square ending in $n$ occurrences of the $m$-digit pattern.
Proof
We prove that there exists a sequence $\sequence {b_n}$ with the properties:
- $b_n < 10^{m n}$
- $b_n^2 \equiv \underbrace {\sqbrk {1 \paren {a_1 \cdots a_m} \cdots \paren {a_1 \cdots a_m}}}_{n \text { occurrences}} \pmod {2 \times 10^{m n}}$
by induction:
Basis for the Induction
For $n = 1$, we choose the number $b_1 = x \pmod {10^m}$ with $b_1 < 10^m$.
Note that:
\(\ds b_1^2\) | \(=\) | \(\ds \paren {x - k \times 10^m}^2\) | for some $k \in \Z$ | |||||||||||
\(\ds \) | \(=\) | \(\ds k^2 \times 10^{2 m} - 2 x k \times 10^m x^2\) | Square of Sum | |||||||||||
\(\ds \) | \(\equiv\) | \(\ds x^2\) | \(\ds \pmod {2 \times 10^m}\) | |||||||||||
\(\ds \) | \(\equiv\) | \(\ds \sqbrk {1 a_1 a_2 \cdots a_m}\) | \(\ds \pmod {2 \times 10^m}\) | by assumption |
This is the basis for the induction.
Induction Hypothesis
This is our induction hypothesis:
- There exists some $b_r$ such that:
- $b_r < 10^{m r}$
- $b_r^2 \equiv \underbrace {\sqbrk {1 \paren {a_1 \cdots a_m} \cdots \paren {a_1 \cdots a_m}}}_{r \text { occurrences}} \pmod {2 \times 10^{m r}}$
Now we need to show true for $n = r 1$:
- There exists some $b_{r 1}$ such that:
- $b_{r 1} < 10^{m \paren {r 1} }$
- $b_{r 1}^2 \equiv \underbrace {\sqbrk {1 \paren {a_1 \cdots a_m} \cdots \paren {a_1 \cdots a_m}}}_{r 1 \text { occurrences}} \pmod {2 \times 10^{m \paren {r 1}}}$
Induction Step
This is our induction step:
Let $b < 10^m$ and $b_{r 1} = b \times 10^{m r} b_r$.
Note that:
\(\ds b_{r 1}^2\) | \(=\) | \(\ds \paren {b \times 10^{m r} b_r}^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds b^2 \times 10^{2 m r} 2 b b_r \times 10^{m r} b_r^2\) | Square of Sum | |||||||||||
\(\ds \) | \(\equiv\) | \(\ds 2 b b_r \times 10^{m r} \underbrace {\sqbrk {1 \paren {a_1 \cdots a_m} \cdots \paren {a_1 \cdots a_m} } }_{r \text { occurrences} } 2 k \times 10^{m r}\) | \(\ds \pmod {2 \times 10^{m \paren {r 1} } }\) | Induction Hypothesis; for some $k \in \Z$ |
The rightmost $m r$ digits already satisfy the condition, so we consider the next $m 1$ digits.
We want:
- $2 b b_r 1 2 k \equiv \sqbrk {1 a_1 \cdots a_m} \pmod {2 \times 10^m}$
We first take Modulo $10^m$:
- $2 b b_r 1 2 k \equiv \sqbrk {a_1 \cdots a_m} \pmod {10^m}$
So we need to solve:
- $b b_r t \times 10^m = \dfrac {\sqbrk {a_1 \cdots a_m} - 1} 2 - k$
for integer solutions $b, t$.
Since $a_m \ne 5$ and is odd:
- $2, 5 \nmid b_r$
so $b_r$ and $10^m$ are coprime.
By Bézout's Identity, a solution for $b, t$ exists.
We can also find a solution with $0 \le b < 10^m$.
For this $b$, if;
- $2 b b_r 1 2 k \equiv \sqbrk {1 a_1 \cdots a_m} \pmod {2 \times 10^m}$
then take $b' = b$, $b_{r 1} = b' \times 10^{m r} b_r$ and we are done.
It may happen that:
- $2 b b_r 1 2 k \equiv \sqbrk {0 a_1 \cdots a_m} \pmod {2 \times 10^m}$
In this case, take $b' = b \pm 5 \times 10^{m - 1}$, whichever is between $0$ and $10^m$.
We have:
\(\ds 2b' b_r 1 2 k\) | \(=\) | \(\ds 2 b_r \paren {b \pm 5 \times 10^{m - 1} } 2 k 1\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 2 b_r b 2 k 1 \pm 10^m\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \equiv \sqbrk {0 a_1 \cdots a_m} \pm 10^m\) | \(\ds \pmod {2 \times 10^m}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \equiv \sqbrk {1 a_1 \cdots a_m}\) | \(\ds \pmod {2 \times 10^m}\) |
hence $b_{r 1} = b' \times 10^{m r} b_r$ satisfy our conditions as well.
By the Principle of Mathematical Induction, the sequence $\sequence {b_n}$ exists.
$\blacksquare$
Example
The $n$th term in the sequence:
- $611, 734 \, 611, 494 \, 734 \, 611, 63 \, 494 \, 734 \, 611, \dots$
have squares ending in $n$ occurrences of $321$:
\(\ds 373 \, \mathbf {321}\) | \(=\) | \(\ds 611^2\) | ||||||||||||
\(\ds 539 \, 653 \, \mathbf {321 \, 321}\) | \(=\) | \(\ds 734 \, 611^2\) | ||||||||||||
\(\ds 244 \, 762 \, 335 \, \mathbf {321 \, 321 \, 321}\) | \(=\) | \(\ds 494 \, 734 \, 611^2\) | ||||||||||||
\(\ds 4 \, 031 \, 581 \, 323 \, \mathbf {321 \, 321 \, 321 \, 321}\) | \(=\) | \(\ds 63 \, 494 \, 734 \, 611^2\) |
Also see
Since:
\(\ds 11^2\) | \(=\) | \(\ds 1 \mathbf {21}\) | ||||||||||||
\(\ds 23^2\) | \(=\) | \(\ds 5 \mathbf {29}\) | ||||||||||||
\(\ds 19^2\) | \(=\) | \(\ds 3 \mathbf {61}\) | ||||||||||||
\(\ds 13^2\) | \(=\) | \(\ds 1 \mathbf {69}\) | ||||||||||||
\(\ds \frac {84} 4\) | \(=\) | \(\ds 21\) |
it is seen that all the numbers in that page satisfy the condition above.
Hence there are squares with any number of occurrences of these patterns.