Recurring Parts of Multiples of One Thirteenth
Jump to navigation
Jump to search
Theorem
The multiples of $\dfrac 1 {13}$ from $\dfrac 1 {13}$ to $\dfrac {12} {13}$ can be divided into two sets of equal size:
- one where the digits of the recurring part consists of a cyclic permutation of $076923$
- one where the digits of the recurring part consists of a cyclic permutation of $153846$.
Proof
\(\ds \dfrac 1 {13}\) | \(=\) | \(\ds 0 \cdotp 076923 \, 076923 \ldots\) | ||||||||||||
\(\ds \dfrac 2 {13}\) | \(=\) | \(\ds 0 \cdotp 153846 \, 153846 \ldots\) | ||||||||||||
\(\ds \dfrac 3 {13}\) | \(=\) | \(\ds 0 \cdotp 230796 \, 230796 \ldots\) | ||||||||||||
\(\ds \dfrac 4 {13}\) | \(=\) | \(\ds 0 \cdotp 307692 \, 307692 \ldots\) | ||||||||||||
\(\ds \dfrac 5 {13}\) | \(=\) | \(\ds 0 \cdotp 384615 \, 384615 \ldots\) | ||||||||||||
\(\ds \dfrac 6 {13}\) | \(=\) | \(\ds 0 \cdotp 461538 \, 461538 \ldots\) | ||||||||||||
\(\ds \dfrac 7 {13}\) | \(=\) | \(\ds 0 \cdotp 538461 \, 538461 \ldots\) | ||||||||||||
\(\ds \dfrac 8 {13}\) | \(=\) | \(\ds 0 \cdotp 615384 \, 615384 \ldots\) | ||||||||||||
\(\ds \dfrac 9 {13}\) | \(=\) | \(\ds 0 \cdotp 692307 \, 692307 \ldots\) | ||||||||||||
\(\ds \dfrac {10} {13}\) | \(=\) | \(\ds 0 \cdotp 769230 \, 769230 \ldots\) | ||||||||||||
\(\ds \dfrac {11} {13}\) | \(=\) | \(\ds 0 \cdotp 846153 \, 846153 \ldots\) | ||||||||||||
\(\ds \dfrac {12} {13}\) | \(=\) | \(\ds 0 \cdotp 923076 \, 923076 \ldots\) |
$\blacksquare$
Also see
Sources
- 1986: David Wells: Curious and Interesting Numbers ... (previous) ... (next): $13$
- 1986: David Wells: Curious and Interesting Numbers ... (previous) ... (next): $076,923$
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): $13$
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): $076,923$