Power of n equalling (n - 1)! 1
Jump to navigation
Jump to search
Theorem
There is exactly one solution to the equation in the integers:
- $\paren {n - 1}! 1 = n^k$
for $k > 1$, and that is:
- $n = 5$
- $k = 2$
Theorem
We have that:
\(\ds \paren {1 - 1}! 1\) | \(=\) | \(\ds 0! 1\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1 1\) | Factorial of Zero | |||||||||||
\(\ds \) | \(=\) | \(\ds 2\) | not a power of $1$ | |||||||||||
\(\ds \paren {2 - 1}! 1\) | \(=\) | \(\ds 1! 1\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1 1\) | Examples of Factorials | |||||||||||
\(\ds \) | \(=\) | \(\ds 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 2^1\) | $k = 1$ | |||||||||||
\(\ds \paren {3 - 1}! 1\) | \(=\) | \(\ds 2! 1\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 2 1\) | Examples of Factorials | |||||||||||
\(\ds \) | \(=\) | \(\ds 3\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 3^1\) | $k = 1$ | |||||||||||
\(\ds \paren {4 - 1}! 1\) | \(=\) | \(\ds 3! 1\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 6 1\) | Examples of Factorials | |||||||||||
\(\ds \) | \(=\) | \(\ds 7\) | not a power of $4$ | |||||||||||
\(\ds \paren {5 - 1}! 1\) | \(=\) | \(\ds 4! 1\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 24 1\) | Examples of Factorials | |||||||||||
\(\ds \) | \(=\) | \(\ds 25\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 5^2\) |
Let $n > 5$.
Suppose $n$ is composite.
By Divisibility of n-1 Factorial by Composite n:
- $n \divides \paren {n - 1}!$
and thus:
- $n \nmid \paren {n - 1}! 1$
showing that $\paren {n - 1}! 1$ is not a power of $n$.
Suppose $n$ is prime.
Further suppose:
- $\exists k \in \N: \paren {n - 1}! 1 = n^k$
Then:
\(\ds \paren {n - 1}!\) | \(=\) | \(\ds n^k - 1\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {n - 1} \sum_{i \mathop = 0}^{k - 1} n^i\) | Sum of Geometric Sequence | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {n - 2}!\) | \(=\) | \(\ds \sum_{i \mathop = 0}^{k - 1} n^i\) | |||||||||||
\(\ds \) | \(\equiv\) | \(\ds \sum_{i \mathop = 0}^{k - 1} 1^i\) | \(\ds \pmod {n - 1}\) | Congruence of Powers | ||||||||||
\(\ds \) | \(\equiv\) | \(\ds k\) | \(\ds \pmod {n - 1}\) |
By Divisibility of n-1 Factorial by Composite n, since $n - 1 \ne 4$ and is composite:
- $n - 1 \divides \paren {n - 2}!$
thus $k$ must be a multiple of $n - 1$.
However:
\(\ds n^{n - 1}\) | \(>\) | \(\ds n \paren {n - 1} \paren {n - 2} \cdots \paren 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds n!\) | ||||||||||||
\(\ds \) | \(>\) | \(\ds 2 \paren {n - 1}!\) | ||||||||||||
\(\ds \) | \(>\) | \(\ds \paren {n - 1}! 1\) | ||||||||||||
\(\ds \) | \(>\) | \(\ds 1\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds n^0\) |
which shows that no multiple of $n - 1$ can satisfy our equation.
Hence there is no solution for $n > 5$.
$\blacksquare$
Historical Note
The fact that $25 = 4! 1$ is the only solution to $\left({n - 1}\right)! 1 = n^k$ was apparently proved by Joseph Liouville, but this requires corroboration.
Sources
- 1970: Wacław Sierpiński: 250 Problems in Elementary Number Theory: No. $113$
- 1986: David Wells: Curious and Interesting Numbers ... (previous) ... (next): $25$
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): $25$