One Represented With Infinite Twos
Jump to navigation
Jump to search
Theorem
\(\ds 1\) | \(=\) | \(\ds \cfrac 2 {\cfrac 2 {\cfrac 2 {\cfrac 2 {\cfrac 2 {\ddots + \ddots} + \cfrac 2 {\ddots + \ddots} } + \cfrac 2 {\cfrac 2 {\ddots + \ddots} + \cfrac 2 {\ddots + \ddots} } } + \cfrac 2 {\cfrac 2 {\cfrac 2 {\ddots + \ddots} + \cfrac 2 {\ddots + \ddots} } + \cfrac 2 {\cfrac 2 {\ddots + \ddots} + \cfrac 2 {\ddots + \ddots} } } } + \cfrac 2 {\cfrac 2 {\cfrac 2 {\cfrac 2 {\ddots + \ddots} + \cfrac 2 {\ddots + \ddots} } + \cfrac 2 {\cfrac 2 {\ddots + \ddots} + \cfrac 2 {\ddots + \ddots} } } + \cfrac 2 {\cfrac 2 {\cfrac 2 {\ddots + \ddots} + \cfrac 2 {\ddots + \ddots} } + \cfrac 2 {\cfrac 2 {\ddots + \ddots} + \cfrac 2 {\ddots + \ddots} } } } }\) |
where the bottom row contains $2^n$ ones and the pyramid above it contains $\paren{2^n - 1}$ twos.
Proof
We have:
\(\ds 1\) | \(=\) | \(\ds \cfrac 2 {1 + 1}\) | One Layer Deep: $2^1$ ones and $\paren{2^1 - 1}$ twos | |||||||||||
\(\ds \) | \(=\) | \(\ds \cfrac 2 {\cfrac 2 {1 + 1} + \cfrac 2 {1 + 1} }\) | Two Layers Deep: $2^2$ ones and $\paren{2^2 - 1}$ twos | |||||||||||
\(\ds \) | \(=\) | \(\ds \cfrac 2 {\cfrac 2 {\cfrac 2 {1 + 1} + \cfrac 2 {1 + 1} } + \cfrac 2 {\cfrac 2 {1 + 1} + \cfrac 2 {1 + 1} } }\) | Three Layers Deep: $2^3$ ones and $\paren{2^3 - 1}$ twos | |||||||||||
\(\ds \) | \(=\) | \(\ds \cfrac 2 {\cfrac 2 {\cfrac 2 {\cfrac 2 {1 + 1} + \cfrac 2 {1 + 1} } + \cfrac 2 {\cfrac 2 {1 + 1} + \cfrac 2 {1 + 1} } } + \cfrac 2 {\cfrac 2 {\cfrac 2 {1 + 1} + \cfrac 2 {1 + 1} } + \cfrac 2 {\cfrac 2 {1 + 1} + \cfrac 2 {1 + 1} } } }\) | Four Layers Deep: $2^4$ ones and $\paren{2^4 - 1}$ twos | |||||||||||
\(\ds \) | \(=\) | \(\ds \cfrac 2 {\cfrac 2 {\cfrac 2 {\cfrac 2 {\cfrac 2 {1 + 1} + \cfrac 2 {1 + 1} } + \cfrac 2 {\cfrac 2 {1 + 1} + \cfrac 2 {1 + 1} } } + \cfrac 2 {\cfrac 2 {\cfrac 2 {1 + 1} + \cfrac 2 {1 + 1} } + \cfrac 2 {\cfrac 2 {1 + 1} + \cfrac 2 {1 + 1} } } } + \cfrac 2 {\cfrac 2 {\cfrac 2 {\cfrac 2 {1 + 1} + \cfrac 2 {1 + 1} } + \cfrac 2 {\cfrac 2 {1 + 1} + \cfrac 2 {1 + 1} } } + \cfrac 2 {\cfrac 2 {\cfrac 2 {1 + 1} + \cfrac 2 {1 + 1} } + \cfrac 2 {\cfrac 2 {1 + 1} + \cfrac 2 {1 + 1} } } } }\) | Five Layers Deep: $2^5$ ones and $\paren{2^5 - 1}$ twos | |||||||||||
\(\ds \) | \(=\) | \(\ds \cdots\) |
$\blacksquare$