Law of Identity/Formulation 1/Proof 1
Jump to navigation
Jump to search
Theorem
- $p \vdash p$
Proof
By the tableau method of natural deduction:
Line | Pool | Formula | Rule | Depends upon | Notes | |
---|---|---|---|---|---|---|
1 | 1 | $p$ | Premise | (None) |
$\blacksquare$
This is the shortest tableau proof possible.
Sources
- 1965: E.J. Lemmon: Beginning Logic ... (previous) ... (next): Chapter $1$: The Propositional Calculus $1$: $5$ Further Proofs: Résumé of Rules: Theorem $29$
- 2000: Michael R.A. Huth and Mark D. Ryan: Logic in Computer Science: Modelling and reasoning about systems ... (previous) ... (next): $\S 1.2.1$: Rules for natural deduction