Gamma Function Extends Factorial
Jump to navigation
Jump to search
Theorem
- $\forall n \in \N: \map \Gamma {n 1} = n!$
Proof
For $n = 0$:
\(\ds \map \Gamma 1\) | \(=\) | \(\ds \int_0^\infty e^{-t} \rd t\) | Definition of Gamma Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \bigintlimits {-e^{-t} } 0 \infty\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 0 - \paren {-1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1\) |
Then by Gamma Difference Equation:
- $\forall z \in \Z_{> 0}: \map \Gamma {z 1} = z \, \map \Gamma z$
Hence the result.
$\blacksquare$
Sources
- 1965: Murray R. Spiegel: Theory and Problems of Laplace Transforms ... (previous) ... (next): Chapter $1$: The Laplace Transform: Some Special Functions: $\text {I}$. The Gamma function: $1$
- 1965: Murray R. Spiegel: Theory and Problems of Laplace Transforms ... (previous) ... (next): Chapter $1$: The Laplace Transform: Solved Problems: The Gamma Function: $28 \ \text{(b)}$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $16.3$: The Gamma Function: Recursion Formula
- 1968: George B. Thomas, Jr.: Calculus and Analytic Geometry (4th ed.) ... (previous) ... (next): Back endpapers: A Brief Table of Integrals: $139$.
- 1977: K.G. Binmore: Mathematical Analysis: A Straightforward Approach ... (previous) ... (next): $\S 17.4 \ (4)$
- 1983: François Le Lionnais and Jean Brette: Les Nombres Remarquables ... (previous) ... (next): $0,88560 31944 \ldots$
- 1986: David Wells: Curious and Interesting Numbers ... (previous) ... (next): $1 \cdotp 772 \, 453 \, 850 \, 905 \, 516 \, 027 \, 298 \, 167 \, 483 \, 341 \, 145 \, 182 \, 797 \ldots$
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.5$: Permutations and Factorials
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): $1 \cdotp 77245 \, 38509 \, 05516 \, 02729 \, 81674 \, 83341 \, 14518 \, 27975 \ldots$
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): gamma function
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): gamma function