GCD of Integers with Common Divisor
Jump to navigation
Jump to search
Theorem
Let $a, b \in \Z$ be integers such that not both $a = 0$ and $b = 0$.
Let $k \in \Z_{>0}$ be a strictly positive integer.
Then:
- $\gcd \set {k a, k b} = k \gcd \set {a, b}$
where $\gcd$ denotes the greatest common divisor.
Corollary
Let $a, b \in \Z$ be integers such that not both $a = 0$ and $b = 0$.
Let $k \in \Z_{\ne 0}$ be a non-zero integer.
Then:
- $\gcd \set {k a, k b} = \size k \gcd \set {a, b}$
where $\gcd$ denotes the greatest common divisor.
Proof 1
Consider the demonstration of the operation of the Euclidean Algorithm applied to $a$ and $b$.
Let each equation be multiplied by $k$.
We have:
\(\ds a k\) | \(=\) | \(\ds q_1 \paren {b k} r_1 k\) | where $0 < r_1 k < b_k$ | |||||||||||
\(\ds b k\) | \(=\) | \(\ds q_2 \paren {r_1 k} r_2 k\) | where $0 < r_2 k < r_1 k$ | |||||||||||
\(\ds r_1 k\) | \(=\) | \(\ds q_3 \paren {r_2 k} r_3 k\) | where $0 < r_3 k < r_2 k$ | |||||||||||
\(\ds \cdots\) | \(\) | \(\ds \) | ||||||||||||
\(\ds r_{n - 2} k\) | \(=\) | \(\ds q_n \paren {r_{n - 1} k} r_n k\) | where $0 < r_n k < r_{n - 1} k$ | |||||||||||
\(\ds r_{n - 1} k\) | \(=\) | \(\ds q_{n 1} \paren {r_n k} 0\) |
This is the operation of the Euclidean Algorithm applied to $k a$ and $k b$.
Hence the greatest common divisor is the last non-zero remainder $r_n k$.
That is:
- $\gcd \set {k a, k b} = k \gcd \set {a, b}$
$\blacksquare$
Proof 2
\(\ds \exists x, y \in \Z: \, \) | \(\ds \gcd \set {a k, b k}\) | \(=\) | \(\ds \paren {a k} x \paren {b k} y\) | Bézout's Identity: $\gcd \set {a k, b k}$ is the smallest such integer combination | ||||||||||
\(\ds \) | \(=\) | \(\ds k \paren {a x b y}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds k \gcd \set {a, b}\) | Bézout's Identity |
$\blacksquare$
Examples
Example: $12$ and $30$
\(\ds \gcd \set {12, 30}\) | \(=\) | \(\ds 3 \gcd \set {4, 10}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 3 \times 2 \gcd \set {2, 5}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 6 \times 1\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 6\) |