Factor Principles/Conjunction on Right/Formulation 1
Theorem
- $p \implies q \vdash \paren {p \land r} \implies \paren {q \land r}$
Proof 1
By the tableau method of natural deduction:
Line | Pool | Formula | Rule | Depends upon | Notes | |
---|---|---|---|---|---|---|
1 | 1 | $p \implies q$ | Premise | (None) | ||
2 | $r \implies r$ | Law of Identity | (None) | This is a theorem so depends on nothing | ||
3 | 1 | $\paren {p \implies q} \land \paren {r \implies r}$ | Rule of Conjunction: $\land \II$ | 1, 2 | ||
4 | 1 | $\paren {p \land r} \implies \paren {q \land r}$ | Sequent Introduction | 3 | Praeclarum Theorema |
$\blacksquare$
Proof 2
By the tableau method of natural deduction:
Line | Pool | Formula | Rule | Depends upon | Notes | |
---|---|---|---|---|---|---|
1 | 1 | $p \implies q$ | Premise | (None) | ||
2 | 2 | $p \land r$ | Assumption | (None) | ||
3 | 2 | $p$ | Rule of Simplification: $\land \EE_1$ | 2 | ||
4 | 1, 2 | $q$ | Modus Ponendo Ponens: $\implies \mathcal E$ | 1, 3 | ||
5 | 2 | $r$ | Rule of Simplification: $\land \EE_2$ | 2 | ||
6 | 1, 2 | $q \land r$ | Rule of Conjunction: $\land \II$ | 4, 5 | ||
7 | 1 | $\paren {p \land r} \implies \paren {q \land r}$ | Rule of Implication: $\implies \II$ | 2 – 6 | Assumption 2 has been discharged |
$\blacksquare$
Proof by Truth Table
Proof by Truth Table:
$\begin{array}{|ccc||ccccccccccc|} \hline p & q & r & (p & \implies & q) & \implies & ((p & \land & r) & \implies & (q & \land & r)) \\ \hline \T & \T & \T & \T & \T & \T & \T & \T & \T & \T & \T & \T & \T & \T \\ \T & \T & \F & \T & \T & \T & \T & \T & \F & \F & \T & \T & \F & \F \\ \T & \F & \T & \T & \F & \F & \T & \T & \T & \T & \F & \F & \F & \T \\ \T & \F & \F & \T & \F & \F & \T & \T & \F & \F & \T & \F & \F & \F \\ \F & \T & \T & \F & \T & \T & \T & \F & \F & \T & \T & \T & \T & \T \\ \F & \T & \F & \F & \T & \T & \T & \F & \F & \F & \T & \T & \F & \F \\ \F & \F & \T & \F & \T & \F & \T & \F & \F & \T & \T & \F & \F & \T \\ \F & \F & \F & \F & \T & \F & \T & \F & \F & \F & \T & \F & \F & \F \\ \hline \end{array}$
$\blacksquare$