Factor Principles
Jump to navigation
Jump to search
Theorem
Conjunction on Right
Formulation 1
- $p \implies q \vdash \paren {p \land r} \implies \paren {q \land r}$
Formulation 2
- $\vdash \paren {p \implies q} \implies \paren {\paren {p \land r} \implies \paren {q \land r} }$
Conjunction on Left
Formulation 1
- $p \implies q \vdash \paren {r \land p} \implies \paren {r \land q}$
Formulation 2
- $\vdash \paren {p \implies q} \implies \paren {\paren {r \land p} \implies \paren {r \land q} }$
Disjunction on Right
Formulation 1
- $p \implies q \vdash \paren {p \lor r} \implies \paren {q \lor r}$
Formulation 2
- $\vdash \paren {p \implies q} \implies \paren {\paren {p \lor r} \implies \paren {q \lor r} }$
Disjunction on Left
Formulation 1
- $p \implies q \vdash \paren {r \lor p} \implies \paren {r \lor q}$
Formulation 2
- $\vdash \paren {p \implies q} \implies \paren {\paren {r \lor p} \implies \paren {r \lor q} }$