Chinese Remainder Theorem

From ProofWiki
Jump to navigation Jump to search


Theorem

Let $b_1, b_2, \ldots, b_r \in \Z$.

Let $n_1, n_2, \ldots, n_r$ be pairwise coprime positive integers.

Let $\ds N = \prod_{i \mathop = 1}^r n_i$.


Then the system of linear congruences:

\(\ds x\) \(\equiv\) \(\ds b_1\) \(\ds \pmod {n_1}\)
\(\ds x\) \(\equiv\) \(\ds b_2\) \(\ds \pmod {n_2}\)
\(\ds \) \(\vdots\) \(\ds \)
\(\ds x\) \(\equiv\) \(\ds b_r\) \(\ds \pmod {n_r}\)

has a solution which is unique modulo $N$:

$\exists ! a \in \Z_{>0}: x \equiv a \pmod N$


Corollary

Let $n_1, n_2, \ldots, n_r$ be pairwise coprime positive integers.

Let $\ds N = \prod_{i \mathop = 1}^r n_i$.

For an integer $k$, let $\Z / k \Z$ denote the ring of integers modulo $k$.

Then we have a ring isomorphism:

$\Z / N \Z \simeq \Z / n_1 \Z \times \cdots \times \Z / n_r \Z$


General Result

Let $n_1, n_2, \ldots, n_k$ be positive integers.

Let $b_1, b_2, \ldots, b_k$ be integers such that:

$\forall i \ne j: \gcd \set {n_i, n_j} \divides b_i - b_j$


Then the system of linear congruences:

\(\ds x\) \(\equiv\) \(\ds b_1\) \(\ds \pmod {n_1}\)
\(\ds x\) \(\equiv\) \(\ds b_2\) \(\ds \pmod {n_2}\)
\(\ds \) \(\vdots\) \(\ds \)
\(\ds x\) \(\equiv\) \(\ds b_k\) \(\ds \pmod {n_k}\)

has a simultaneous solution which is unique modulo $\lcm \set {n_1, \ldots, n_k}$.


Proof

Existence

Let $N_k = \dfrac N {n_k}$ for $k = 1, 2, \ldots, r$.


From Integer Coprime to all Factors is Coprime to Whole:

$\forall k \in \set {1, 2, \ldots, r}: \gcd \set {N_k, n_k} = \gcd \set {n_1 n_2 \cdots n_{k - 1} n_{k + 1} \cdots n_r, n_k} = 1$

From Solution of Linear Congruence, the linear congruence:

$N_k x \equiv b_k \pmod {n_k}$

has a unique solution modulo $n_k$.

Let this solution be $x_k$.

That is:

$(1): \quad N_k x_k \equiv b_k \pmod {n_k}$

for $k = 1, 2, \ldots, r$.


Let $\ds x_0 = \sum_{i \mathop = 1}^r N_i x_i$.

For each $k, i \in \set {1, 2, 3, \ldots, r}$ such that $i \ne k$:

\(\ds n_k\) \(\divides\) \(\ds N\)
\(\ds \leadsto \ \ \) \(\ds n_k\) \(\divides\) \(\ds n_i N_i\)
\(\ds \leadsto \ \ \) \(\ds n_k\) \(\divides\) \(\ds N_i\) Euclid"s Lemma
\(\ds \leadsto \ \ \) \(\ds n_k\) \(\divides\) \(\ds N_i x_i\) Divisor Divides Multiple
\(\text {(2)}: \quad\) \(\ds \leadsto \ \ \) \(\ds N_i x_i\) \(\equiv\) \(\ds 0\) \(\ds \pmod {n_k}\) Congruent to Zero iff Modulo is Divisor


Then for each $k = 1, 2, 3, \ldots, r$:

\(\ds x_0\) \(\equiv\) \(\ds \sum_{i \mathop = 1}^r N_i x_i\)
\(\ds \) \(\equiv\) \(\ds N_k x_k\) from $(2)$
\(\ds \) \(\equiv\) \(\ds b_k\) \(\ds \pmod {n_k}\) from $(1)$

Thus $x_0$ is a simultaneous solution.

$\Box$

Uniqueness

Suppose $x"$ is a second solution of the system.

That is:

$\forall k \in \set {1, 2, \ldots, r}: x_0 \equiv x" \equiv b_k \pmod {n_k}$

Then:

\(\ds \forall k \in \set {1, 2, \ldots, r}: \, \) \(\ds x"\) \(\equiv\) \(\ds x_0\) \(\ds \pmod {n_k}\)
\(\ds \leadsto \ \ \) \(\ds \forall k \in \set {1, 2, \ldots, r}: \, \) \(\ds n_k\) \(\divides\) \(\ds x" - x_0\) Definition of Congruence
\(\ds \leadsto \ \ \) \(\ds N\) \(\divides\) \(\ds x" - x_0\) All Factors Divide Integer then Whole Divides Integer
\(\ds \leadsto \ \ \) \(\ds x"\) \(\equiv\) \(\ds x_0\) \(\ds \pmod N\) Definition of Congruence

Thus the simultaneous solution is unique modulo $N$.

$\blacksquare$


Construction of Solution

The following is a systematic technique for finding $a$:

For each $i \in \set {1, 2, \ldots, r}$, calculate:

$y_i = \dfrac N {n_i}$

Using Euclid"s Algorithm, calculate $z_i$ such that:

$z_i y_i = 1 \pmod {n_i}$

Then:

$x \equiv \ds \sum_{i \mathop = 1}^r b_i y_i z_i$

is a unique solution to the given system of linear congruences.


Examples

Example: $x \equiv 2 \pmod 3, 3 \pmod 5, 2 \pmod 7$

Consider the system of simultaneous linear congruences:

\(\ds x\) \(\equiv\) \(\ds 2\) \(\ds \pmod 3\)
\(\ds x\) \(\equiv\) \(\ds 3\) \(\ds \pmod 5\)
\(\ds x\) \(\equiv\) \(\ds 2\) \(\ds \pmod 7\)

Then $x \equiv 23 \pmod {105}$


Also see


Historical Note

The Chinese Remainder Theorem was found in the Sun Tzu Suan Ching of Sun Tzu, who was active in China sometime between $200$ and $500$ C.E (nobody knows exactly when).

The principle is believed to have been used by Chinese calendar makers as far back as $100$ C.E.

It was first proved properly by Qin Jiushao in $1247$.


Sources