Category:Definitions/Negation Functions
Jump to navigation
Jump to search
This category contains definitions related to Negation Functions.
Related results can be found in Category:Negation Functions.
The negation function is the function defined on the various standard number systems as follows:
Integer Negation Function
The negation function $h: \Z \to \Z$ is defined on the set of integers as:
- $\forall n \in \Z: \map h n = -n$
Rational Negation Function
The negation function $h: \Q \to \Q$ is defined on the set of rational numbers as:
- $\forall x \in \Q: \map h x = -x$
Real Negation Function
The negation function $h: \R \to \R$ is defined on the set of real numbers as:
- $\forall x \in \R: \map h x = -x$
Complex Negation Function
The negation function $h: \R \to \R$ is defined on the set of complex numbers as:
- $\forall z = x i y \in \C: \map h z = -x - i y$
Pages in category "Definitions/Negation Functions"
The following 7 pages are in this category, out of 7 total.