Category:Ackermann-Péter Function
Jump to navigation
Jump to search
This category contains results about Ackermann-Péter Function.
Definitions specific to this category can be found in Definitions/Ackermann-Péter Function.
The Ackermann-Péter function $A: \Z_{\ge 0} \times \Z_{\ge 0} \to \Z_{> 0}$ is an integer-valued function defined on the set of ordered pairs of positive integers as:
- $\map A {x, y} = \begin{cases} y 1 & : x = 0 \\
\map A {x - 1, 1} & : x > 0, y = 0 \\ \map A {x - 1, \map A {x, y - 1} } & : \text{otherwise} \end{cases}$
Subcategories
This category has the following 2 subcategories, out of 2 total.
Pages in category "Ackermann-Péter Function"
The following 9 pages are in this category, out of 9 total.