Bounds on Number of Odd Terms in Pascal's Triangle

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $P_n$ be the number of odd elements in the first $n$ rows of Pascal's triangle.

Then:

$0 \cdotp 812 \ldots < \dfrac {P_n} {n^{\lg 3} } < 1$

where $\lg 3$ denotes logarithm base $2$ of $3$.

The lower bound $0 \cdotp 812 \ldots$ is known as the Stolarsky-Harborth constant.


Proof



Also see


Sources