Bhaskara"s Lemma
Jump to navigation
Jump to search
Lemma
Let $m \in \Z$ be an integer.
For $k \ne 0$:
- $N x^2 + k = y^2 \implies N \paren {\dfrac {m x + y} k}^2 + \dfrac {m^2 - N} k = \paren {\dfrac {m y + N x} k}^2$
Proof
\(\ds N x^2 + k\) | \(=\) | \(\ds y^2\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds N m^2 x^2 - N^2 x^2 + k \paren {m^2 - N}\) | \(=\) | \(\ds m^2 y^2 - N y^2\) | multiplying both sides by $m^2 - N$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds N m^2 x^2 + 2 N m x y + N y^2 + k \paren {m^2 - N}\) | \(=\) | \(\ds m^2 y^2 + 2 N m x y + N^2 x^2\) | adding $N^2 x^2 + 2 N m x y + N y^2$ to both sides | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds N \paren {m x + y}^2 + k \paren {m^2 - N}\) | \(=\) | \(\ds \paren {m y + N x}^2\) | factorizing | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds N \paren {\frac {m x + y} k}^2 + \frac {m^2 - N} k\) | \(=\) | \(\ds \paren {\frac {m y + N x} k}^2\) | dividing by $k^2$ |
The implication goes the other way if $m^2 - N \ne 0$.
$\blacksquare$
Also see
This lemma is used when deriving the Chakravala Method of solving indeterminate quadratic equations.
Source of Name
This entry was named for Bhaskara II Acharya.