Axiom:Vector Space Axioms
Jump to navigation
Jump to search
Definition
The vector space axioms are the defining properties of a vector space.
Let $\struct {G, +_G, \circ}_K$ be a vector space over $K$ where:
- $+_G: G \times G \to G$ is a binary operation on $G$
- $\struct {K, +, \cdot}$ is a division ring whose unity is $1_K$
- $\circ: K \times G \to G$ is a binary operation
The usual situation is for $K$ to be one of the standard number fields $\R$ or $\C$.
The vector space axioms consist of the abelian group axioms:
\((\text V 0)\) | $:$ | Closure Axiom | \(\ds \forall \mathbf x, \mathbf y \in G:\) | \(\ds \mathbf x +_G \mathbf y \in G \) | |||||
\((\text V 1)\) | $:$ | Commutativity Axiom | \(\ds \forall \mathbf x, \mathbf y \in G:\) | \(\ds \mathbf x +_G \mathbf y = \mathbf y +_G \mathbf x \) | |||||
\((\text V 2)\) | $:$ | Associativity Axiom | \(\ds \forall \mathbf x, \mathbf y, \mathbf z \in G:\) | \(\ds \paren {\mathbf x +_G \mathbf y} +_G \mathbf z = \mathbf x +_G \paren {\mathbf y +_G \mathbf z} \) | |||||
\((\text V 3)\) | $:$ | Identity Axiom | \(\ds \exists \mathbf 0 \in G: \forall \mathbf x \in G:\) | \(\ds \mathbf 0 +_G \mathbf x = \mathbf x = \mathbf x +_G \mathbf 0 \) | |||||
\((\text V 4)\) | $:$ | Inverse Axiom | \(\ds \forall \mathbf x \in G: \exists \paren {-\mathbf x} \in G:\) | \(\ds \mathbf x +_G \paren {-\mathbf x} = \mathbf 0 \) |
together with the properties of a unitary module:
\((\text V 5)\) | $:$ | Distributivity over Scalar Addition | \(\ds \forall \lambda, \mu \in K: \forall \mathbf x \in G:\) | \(\ds \paren {\lambda + \mu} \circ \mathbf x = \lambda \circ \mathbf x +_G \mu \circ \mathbf x \) | |||||
\((\text V 6)\) | $:$ | Distributivity over Vector Addition | \(\ds \forall \lambda \in K: \forall \mathbf x, \mathbf y \in G:\) | \(\ds \lambda \circ \paren {\mathbf x +_G \mathbf y} = \lambda \circ \mathbf x +_G \lambda \circ \mathbf y \) | |||||
\((\text V 7)\) | $:$ | Associativity with Scalar Multiplication | \(\ds \forall \lambda, \mu \in K: \forall \mathbf x \in G:\) | \(\ds \lambda \circ \paren {\mu \circ \mathbf x} = \paren {\lambda \cdot \mu} \circ \mathbf x \) | |||||
\((\text V 8)\) | $:$ | Identity for Scalar Multiplication | \(\ds \forall \mathbf x \in G:\) | \(\ds 1_K \circ \mathbf x = \mathbf x \) |
Terminology
The binary operation $+_G: G \times G \to G$ is usually referred to as (vector) addition.
The element $\mathbf c = \mathbf a + \mathbf b$ of $G$ is called the (vector) sum of $\mathbf a$ and $\mathbf b$.
The identity element $\mathbf 0$ of the abelian group $\struct {G, +_G}$ is called the zero vector.
The inverse element $-\mathbf x$ of a vector $\mathbf x$ is called the negative of $\mathbf x$.
Also see
- Vector Inverse is Negative Vector
- Vector Scaled by Zero is Zero Vector
- Additive Inverse in Vector Space is Unique
- Zero Vector is Unique
Sources
- 1961: I.M. Gel"fand: Lectures on Linear Algebra (2nd ed.) ... (previous) ... (next): $\S 1$: $n$-Dimensional vector spaces: Definition $1$
- 1965: Claude Berge and A. Ghouila-Houri: Programming, Games and Transportation Networks ... (previous) ... (next): $1$. Preliminary ideas; sets, vector spaces: $1.2$. Vector Spaces
- 1969: C.R.J. Clapham: Introduction to Abstract Algebra ... (previous) ... (next): Chapter $7$: Vector Spaces: $\S 32$. Definition of a Vector Space
- 1971: Allan Clark: Elements of Abstract Algebra ... (previous) ... (next): Chapter $3$: Field Theory: Vector Spaces, Bases, and Dimensions: $\S 90$
- 1974: Robert Gilmore: Lie Groups, Lie Algebras and Some of their Applications ... (previous) ... (next): Chapter $1$: Introductory Concepts: $1$. Basic Building Blocks: $4$. LINEAR VECTOR SPACE
- 1995: John B. Fraleigh and Raymond A. Beauregard: Linear Algebra (3rd ed.) $\S 3.1$
- 1998: Yoav Peleg, Reuven Pnini and Elyahu Zaarur: Quantum Mechanics ... (previous) ... (next): Chapter $2$: Mathematical Background: $2.2$ Vector Spaces over $C$
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): addition (of vectors)
- 2017: Amol Sasane: A Friendly Approach to Functional Analysis ... (previous) ... (next): $\S 1.1$: Normed and Banach spaces. Vector Spaces
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): addition (of vectors)