Asymmetric Relation is Antisymmetric
Jump to navigation
Jump to search
Theorem
Let $\RR$ be an asymmetric relation.
Then $\RR$ is also antisymmetric.
Proof
Let $\RR$ be asymmetric.
Then from the definition of asymmetric:
- $\tuple {x, y} \in \RR \implies \tuple {y, x} \notin \RR$
Thus:
- $\neg \exists \tuple {x, y} \in \RR: \tuple {y, x} \in \RR$
Thus:
- $\set {\tuple {x, y} \in \RR \land \tuple {y, x} \in \RR} = \O$
Thus:
- $\tuple {x, y} \in \RR \land \tuple {y, x} \in \RR \implies x = y$
is vacuously true.
$\blacksquare$
Sources
- 1965: E.J. Lemmon: Beginning Logic ... (previous) ... (next): Chapter $4$: The Predicate Calculus $2$: $5$ Properties of Relations: $159$