Przejdź do zawartości

Syntaza tlenku azotu

Z Wikipedii, wolnej encyklopedii
Struktura dimerycznej ludzkiej syntazy tlenku azotu[1]

Syntaza tlenku azotu (NOS, EC 1.14.13.39) – enzym przeprowadzający reakcję syntezy tlenku azotu(II) z reszty azotowej aminokwasu L-argininy w obecności NADPH i tlenu cząsteczkowego. NOS jest jedynym znanym białkiem enzymatycznym wiążącym się z FAD, FMN, hemem, tetrahydrobiopteryną (BH4) i kalmoduliną.

Klasyfikacja

[edytuj | edytuj kod]

Obecności NOS w komórkach jako pierwsi dowiedli w doświadczeniach na króliczych aortach odkrywcy czynnika EDRF (czyli NO) Furchgott i Zawadzki w 1980 roku[2]. Od tego czasu stwierdzono istnienie różnych typów syntazy tlenku azotu u wielu organizmów. Klasyfikacja NOS człowieka przedstawia się następująco:

Nazwa Geny Locus Opis
Neuronalna NOS (nNOS lub NOS1) NOS1 12 q24.22 Synteza NO w tkankach nerwowych ośrodkowego i obwodowego układu nerwowego; sygnalizacja międzykomórkowa.
Indukowalna NOS (iNOS lub NOS2) NOS2A, NOS2B, NOS2C 17 q11.2-q12, 17p13.1-q25, 17p13.1-q25 Komórki układu odpornościowego, komórki układu sercowo-naczyniowego. Wolnorodnikowe właściwości NO używane są przez makrofagi do niszczenia patogenów.
Endotelialna NOS (śródbłonkowa NOS, eNOS lub NOS3 albo konstytutywna NOS, cNOS) NOS3 7 q36 Synteza NO w naczyniach krwionośnych, regulacja funkcji naczyń. Jest konstytutywna, co oznacza, że dostarcza stałą, niezależną od czynników indukujących syntezę, ilość NO.

Funkcja

[edytuj | edytuj kod]
Mechanizm reakcji katalizowanej przez syntazy tlenku azotu.

Syntaza tlenku azotu produkuje NO katalizując reakcję pięcioelektronowej oksydacji azotu L-argininy (L-Arg). Oksydacja L-Arg do L-cytruliny zachodzi poprzez dwa etapy monooksygenacji, produktem pośrednim jest Nω-hydroksy-L-arginina (NOHLA). 2 mole O2 i 1,5 mola NADPH jest zużywanych do syntezy 1 mola NO.

L-Arg NADPH H O2 → NOHLA NADP H2O
NOHLA ½ NADPH ½ H O2L-cytrulina ½ NADP NO H2O

Budowa

[edytuj | edytuj kod]

Wszystkie trzy izoformy enzymu (z których każda aktywowana funkcjonuje jako homodimer) posiadają C-końcową domenę o aktywności reduktazowej, homologiczną do białka reduktazy cytochromu P450. Na N-końcu znajduje się domena oksygenazowa zawierająca hem jako grupę prostetyczną, w środku łańcucha polipeptydowego NOS znajduje się natomiast domena wiążąca kalmodulinę. Związanie kalmoduliny działa jak "molekularny przełącznik", umożliwiając przepływ elektronów z reszty flawinowej grupy prostetycznej na domenę reduktazową połączoną z hemem. Proces ten ułatwia przekształcenie O2 i L-argininy w NO i L-cytrulinę. Domena oksygenazowa każdej izoformy NOS zawiera także jako grupę prostetyczną tetrahydrobiopterynę (BH4), niezbędną do wydajnej syntezy NO. Inaczej niż w przypadku innych enzymów wykorzystujących BH4 jako źródło równoważników redukujących, co wymaga reakcji reduktazy dihydrobiopterynowej (EC 1.5.1.33), BH4 w NOS ma za zadanie aktywować przyłączony do hemu tlen przez dostarczenie pojedynczego elektronu, który odzyskany później umożliwia uwolnienie zsyntetyzowanej cząsteczki NO.

Pierwsze białko enzymatyczne o aktywności syntazy NO zidentyfikowano w tkance nerwowej, ostatnią poznaną izoformą był izoenzym śródbłonkowy. Początkowo enzymy klasyfikowano jako ulegające konstytutywnej ekspresji i Ca2 -wrażliwe, ale obecnie wiadomo, że NOS występują w wielu różnych typach komórek i że ich ekspresja jest uzależniona od bardzo wielu czynników.

W przypadku NOS1 i NOS3 fizjologiczne stężenia Ca 2 w komórce regulują wiązanie kalmoduliny, przez co inicjują przepływ elektronów z grup flawinowych na grupę hemu. W przypadku iNOS i NOS2 kalmodulina pozostaje ściśle związana z domeną wiążącą białka nawet przy niskich śródkomórkowych stężeniach Ca2 , będąc w zasadzie podjednostką tego izoenzymu.


Zobacz też

[edytuj | edytuj kod]

Przypisy

[edytuj | edytuj kod]
  1. publikacja w otwartym dostępie – możesz ją przeczytać H. Li, CS. Raman, CB. Glaser, E. Blasko i inni. Crystal structures of zinc-free and -bound heme domain of human inducible nitric-oxide synthase. Implications for dimer stability and comparison with endothelial nitric-oxide synthase. „J Biol Chem”. 274 (30), s. 21276-21284, 1999. DOI: 10.1074/jbc.274.30.21276. PMID: 10409685. 
  2. Furchgott R, Zawadzki J. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. „Nature”. 288 (5789), s. 373-376, 1980. DOI: 10.1038/288373a0. PMID: 6253831. 

Linki zewnętrzne

[edytuj | edytuj kod]