Elipsoida Johna
Elipsoida Johna lub Löwnera-Johna – pojęcie z zakresu geometrii wypukłej i teorii przestrzeni Banacha wprowadzone przez Fritza Johna w 1948 roku[1].
Definicja
[edytuj | edytuj kod]Niech X będzie n-wymiarową przestrzenią unormowaną oraz niech BX oznacza kulę jednostkową w przestrzeni X. Elipsoidą Johna przestrzeni X nazywa się kulę względem metryki zadanej przez pewien iloczyn skalarny w X (hiperkula) zawartą w BX o największej n-wymiarowej objętości
Istnienie elipsoidy Johna wynika z twierdzenia Heinego-Borela. Jest ona ponadto wyznaczona jednoznacznie[2].
Lemat Dvoretzky’ego-Rogersa
[edytuj | edytuj kod]Niech X będzie n-wymiarową przestrzenią unormowaną. Niech ρE oznacza normę euklidesową wprowadzoną przez elipsoidę Johna w X (tj. funkcjonał Minkowskiego elipsoidy Johna przestrzeni X). Istnieje wówczas taka baza ortonormalna (ej)j ≤ n w (X, ρE), że
W szczególności,
dla j ≤ n / 2 1[3].
Przypisy
[edytuj | edytuj kod]- ↑ F. John, Extremum problems with inequalities as subsidiary conditions, Studies and Essays Presented to R. Courant on His 60th Birthday, January 8, 1948, Interscience Publishers, New York, 1948, s. 187–204.
- ↑ Albiac i Kalton 2006 ↓, s. 290.
- ↑ Albiac i Kalton 2006 ↓, s. 299.
Bibliografia
[edytuj | edytuj kod]- F. Albiac, N.J. Kalton: Topics in Banach Space Theory. Springer-Verlag GmbH, 2006. ISBN 978-0-387-28141-4.