Status | Subtype | Assigned | Task | ||
---|---|---|---|---|---|
Resolved | awight | T187836 [Epic] Audit of pending ORES GUI deployments | |||
Resolved | awight | T156518 Deploy ORES Review Tool on Romanian Wikipedia | |||
Resolved | • Catrope | T170723 Deploy ORES Review Tool & ORES-based RCFilters for Romanian & Albanian Wikipedia | |||
Resolved | awight | T170485 ORES deployment - Mid July, 2017 | |||
Duplicate | None | T156501 Enable ORES Review Tool in Romanian Wikipedia | |||
Resolved | None | T130213 [Epic] Edit quality models (damaging/goodfaith) | |||
Resolved | Halfak | T166045 Scoring platform team FY18 Q1 | |||
Resolved | Sumit | T156503 Build damaging/goodfaith models for Romanian Wikipedia | |||
Resolved | Halfak | T156517 Complete Romanian Wikipedia edit quality campaign | |||
Resolved | None | T156357 Deploy edit quality campaign for Romanian Wikipedia |
Event Timeline
Comment Actions
Damaging:
make models/rowiki.damaging.gradient_boosting.model cat datasets/rowiki.labeled_revisions.w_cache.20k_2016.json | \ revscoring cv_train \ revscoring.scorer_models.GradientBoosting \ editquality.feature_lists.rowiki.damaging \ damaging \ --version=0.3.0 \ -p 'max_depth=5' \ -p 'learning_rate=0.01' \ -p 'max_features="log2"' \ -p 'n_estimators=700' \ -s 'table' -s 'accuracy' -s 'precision' -s 'recall' -s 'pr' -s 'roc' -s 'recall_at_fpr(max_fpr=0.10)' -s 'filter_rate_at_recall(min_recall=0.9)' -s 'filt er_rate_at_recall(min_recall=0.75)' -s 'recall_at_precision(min_precision=0.995)' -s 'recall_at_precision(min_precision=0.99)' -s 'recall_at_precision(min_precision=0.98 )' -s 'recall_at_precision(min_precision=0.90)' -s 'recall_at_precision(min_precision=0.75)' -s 'recall_at_precision(min_precision=0.60)' -s 'recall_at_precision(min_pre cision=0.45)' -s 'recall_at_precision(min_precision=0.15)' \ --balance-sample-weight \ --center --scale > models/rowiki.damaging.gradient_boosting.model 2017-06-27 08:00:43,699 INFO:revscoring.utilities.cv_train -- Cross-validating model statistics for 10 folds... 2017-06-27 08:00:44,352 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 1... 2017-06-27 08:03:13,756 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 2... 2017-06-27 08:05:56,730 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 3... 2017-06-27 08:08:40,903 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 4... 2017-06-27 08:11:27,209 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 5... 2017-06-27 08:14:17,733 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 6... 2017-06-27 08:17:35,238 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 7... 2017-06-27 08:20:17,584 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 8... 2017-06-27 08:23:33,992 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 9... 2017-06-27 08:26:46,826 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 10... 2017-06-27 08:29:07,741 INFO:revscoring.utilities.cv_train -- Training model on all data... ScikitLearnClassifier - type: GradientBoosting - params: max_leaf_nodes=null, learning_rate=0.01, min_samples_split=2, verbose=0, center=true, warm_start=false, n_estimators=700, presort="auto", balanced_sample_weig ht=true, loss="deviance", min_samples_leaf=1, balanced_sample=false, init=null, random_state=null, subsample=1.0, max_features="log2", scale=true, min_weight_fraction_le af=0.0, max_depth=5 - version: 0.3.0 - trained: 2017-06-27T08:29:32.376824 Table: ~False ~True ----- -------- ------- False 17212 1678 True 109 828 Accuracy: 0.91 Precision: ----- ----- False 0.994 True 0.33 ----- ----- Recall: ----- ----- False 0.911 True 0.881 ----- ----- PR-AUC: ----- ----- False 0.994 True 0.54 ----- ----- ROC-AUC: ----- ----- False 0.959 True 0.963 ----- ----- Recall @ 0.1 false-positive rate: label threshold recall fpr ------- ----------- -------- ----- False 0.548 0.904 0.094 True 0.444 0.916 0.098 Filter rate @ 0.9 recall: label threshold filter_rate recall ------- ----------- ------------- -------- False 0.569 0.138 0.9 True 0.455 0.866 0.906 Filter rate @ 0.75 recall: label threshold filter_rate recall ------- ----------- ------------- -------- False 0.915 0.284 0.75 True 0.777 0.915 0.752 Recall @ 0.995 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.564 0.901 0.995 True 0.962 0.038 1 Recall @ 0.99 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.331 0.934 0.99 True 0.962 0.038 1 Recall @ 0.98 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.128 0.968 0.98 True 0.962 0.038 1 Recall @ 0.9 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.038 1 0.954 True 0.959 0.051 0.981 Recall @ 0.75 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.038 1 0.954 True 0.945 0.164 0.787 Recall @ 0.6 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.038 1 0.954 True 0.923 0.351 0.608 Recall @ 0.45 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.038 1 0.954 True 0.827 0.706 0.454 Recall @ 0.15 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.038 1 0.954 True 0.105 0.981 0.189
Comment Actions
Goodfaith:
make models/rowiki.goodfaith.gradient_boosting.model [97/1922] cat datasets/rowiki.labeled_revisions.w_cache.20k_2016.json | \ revscoring cv_train \ revscoring.scorer_models.GradientBoosting \ editquality.feature_lists.rowiki.goodfaith \ goodfaith \ --version=0.3.0 \ -p 'max_depth=3' \ -p 'learning_rate=0.1' \ -p 'max_features="log2"' \ -p 'n_estimators=300' \ -s 'table' -s 'accuracy' -s 'precision' -s 'recall' -s 'pr' -s 'roc' -s 'recall_at_fpr(max_fpr=0.10)' -s 'filter_rate_at_recall(min_recall=0.9)' -s 'filt er_rate_at_recall(min_recall=0.75)' -s 'recall_at_precision(min_precision=0.995)' -s 'recall_at_precision(min_precision=0.99)' -s 'recall_at_precision(min_precision=0.98 )' -s 'recall_at_precision(min_precision=0.90)' -s 'recall_at_precision(min_precision=0.75)' -s 'recall_at_precision(min_precision=0.60)' -s 'recall_at_precision(min_pre cision=0.45)' -s 'recall_at_precision(min_precision=0.15)' \ --balance-sample-weight \ --center --scale > models/rowiki.goodfaith.gradient_boosting.model 2017-06-27 13:11:03,053 INFO:revscoring.utilities.cv_train -- Cross-validating model statistics for 10 folds... 2017-06-27 13:11:03,907 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 1... 2017-06-27 13:13:54,482 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 2... 2017-06-27 13:17:12,485 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 3... 2017-06-27 13:19:46,401 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 4... 2017-06-27 13:22:17,370 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 5... 2017-06-27 13:25:08,119 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 6... 2017-06-27 13:27:31,615 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 7... 2017-06-27 13:29:51,620 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 8... 2017-06-27 13:32:09,126 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 9... 2017-06-27 13:34:20,776 INFO:revscoring.scorer_models.sklearn_classifier -- Performing cross-validation 10... 2017-06-27 13:36:25,349 INFO:revscoring.utilities.cv_train -- Training model on all data... ScikitLearnClassifier - type: GradientBoosting - params: max_features="log2", min_samples_leaf=1, min_weight_fraction_leaf=0.0, warm_start=false, balanced_sample=false, balanced_sample_weight=true, center=true, loss ="deviance", min_samples_split=2, max_leaf_nodes=null, verbose=0, max_depth=3, random_state=null, n_estimators=300, learning_rate=0.1, scale=true, subsample=1.0, init=nu ll, presort="auto" - version: 0.3.0 - trained: 2017-06-27T13:36:32.777290 Table: ~False ~True ----- -------- ------- False 489 81 True 1393 17864 Accuracy: 0.926 Precision: ----- ----- False 0.26 True 0.995 ----- ----- Recall: ----- ----- False 0.856 True 0.928 ----- ----- PR-AUC: ----- ----- False 0.469 True 0.994 ----- ----- ROC-AUC: ----- ----- False 0.964 True 0.962 ----- ----- Recall @ 0.1 false-positive rate: label threshold recall fpr ------- ----------- -------- ----- False 0.278 0.93 0.097 True 0.634 0.914 0.093 Filter rate @ 0.9 recall: label threshold filter_rate recall ------- ----------- ------------- -------- False 0.37 0.89 0.907 True 0.738 0.124 0.9 Filter rate @ 0.75 recall: label threshold filter_rate recall ------- ----------- ------------- -------- False 0.76 0.933 0.754 True 0.972 0.271 0.75 Recall @ 0.995 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.987 0.04 1 True 0.414 0.936 0.995 Recall @ 0.99 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.987 0.04 1 True 0.174 0.964 0.991 Recall @ 0.98 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.987 0.04 1 True 0.059 0.991 0.98 Recall @ 0.9 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.986 0.052 0.99 True 0.013 1 0.972 Recall @ 0.75 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.977 0.107 0.808 True 0.013 1 0.972 Recall @ 0.6 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.951 0.296 0.616 True 0.013 1 0.972 Recall @ 0.45 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.914 0.49 0.46 True 0.013 1 0.972 Recall @ 0.15 precision: label threshold recall precision ------- ----------- -------- ----------- False 0.098 0.968 0.161 True 0.013 1 0.972