6.828: Virtual Memory

Adam Belay
abelay@mit.edu

Outline

* Address spaces

* Xx86 Paging hardware

* xv6 VM code

e System call homework solutions

Today’s problem

Protection View:

4)

CPL3

CPLO

Today’s problem

Protection View: Physical Memory View:

4)

2732

CPL3

CPLO

Goal: Isolation

* Each process has its own
memory

e Can read and write its own
memory

e But cannot read or write the
kernel’s memory or another
process’ memory

Physical Memory View:

2732

Solution: Introduce a level of
indirection

VA PA

* Plan: Software can only read and write to virtual
memory

* Only kernel can program MMU

* MMU has a page table that maps virtual addresses
to physical

* Some virtual addresses restricted to kernel-only

Virtual memory in x86

Virtual addresses are divided into 4-KB “pages”

Virtual Address:

31 12 11

| I
\)

| |
20-bit page number 12-bit offset

31

Page table entries (PTE)

P C\W
Physical Page Number AVL |G|A|D|A
T D(T

Some important bits:

* Physical page number: Identifies 20-bit physical page
location; MMU replaces virtual bits with these physical bits

e U: If set, userspace (CPL3) can access this virtual address
e W: If set, the CPU can write to this virtual address

e P: If set, an entry for this virtual address exists

* AVL: Ignored by MMU

Strawman: Store PTEs Iin an array

GET_PTE(va) = &ptes[va >> 12]

How large is the array?
PPN

Strawman: Store PTEs Iin an array

GET_PTE(va) = &ptes[va >> 12]

PPN

How large is the array?
2720 * 32 bits
2720 * 4 bytes
4 Megabytes!

x86 solution: Use two levels to
save space

31 22 21 12 11

| I I
\))

| | |

10-bit DIR 10-bit TBL 12-bit offset
(15t level) (219 level)

X86 solution: Use two levels to

Sadve Space
31 22 21 12 11

| | |

| | |

\ \ \
10-bit DIR | !
(17 level) 10-bit TBL

(2" |evel)

Page Num |FLG

Page Num |FLG \

Basically a tree!

What about a recursive mapping?

10-bit DIR
(1%t level)

10-bit TBL
(2nd level)

Page Num [FLG

What about a recursive mapping?

31 22 21 5 1 0
| | ||
| |]
\ | Y |

10-bit DIR 20-bit page table index
(15t level) PPN

10-bit TBL

(2" level) _

Page Num [FLG

How do we program the MMU?

* %CR3 register is a pointer
to current page table

* Hardware walks page
table tree to find PTEs

* Recently used PTEs

10-bit DIR cached in TLB
t
(1% level) 10-bit TBL
(2" |evel)
— Page Num |FLG

Page Num |FLG \
—

Let’s talk more about flags

Read Not Read Allowed
Allowed
Write Not No Flags PTE_P
Allowed

WCEILY B Not Possible PTE_P | PTE_ W

* If PTE_U is cleared, only the kernel can access
* Why is this needed?

 What happens if flag permission is violated?
* We get a page fault!
* Then what happens?

