
Kernel	Scalability
Adam	Belay	<abelay@mit.edu>



Motivation

• Modern	CPUs	are	predominantly	multicore
• Applications	rely	heavily	on	kernel	for	networking,	
filesystem,	etc.
• If	kernel	can’t	scale	across	many	cores,	applications	
that	rely	on	it	won’t	scale	either
• Have	to	be	able	to	execute	system	calls	in	parallel



Problem	is	sharing

• OS	maintains	many	data	structures
• Process	table,	file	descriptor	table,	buffer	cache,	
scheduler	queues,	etc.

• They	depend	on	locks	to	maintain	invariants
• Applications	may	contend	on	locks,	limiting	
scalability



OS	evolution

• Early	kernels	depended	on	a	single	“big	lock”	to	
protect	kernel	data
• Later,	kernels	transitioned	to	fine-grained	locking
• Now,	many	lock-free	approaches	are	used	too
• Extreme	case:	Some	research	kernels	attempted	to	
share	nothing
• E.g.	FOS	and	Barrelfish
• Could	potentially	run	without	cache-coherence
• Downside:	Poor	load	balancing



Agenda	for	today

1. Read-copy-update	(today’s	reading	assignment)
2. Per-CPU	reference	counters
3. Scalable	commutativity	rule



Read-heavy	data	structures

• Kernels	often	have	data	that	is	read	much	more	
often	than	it	is	modified
• Network	tables:	routing,	ARP
• File	descriptor	arrays,	most	types	of	system	call	state
• RCU	optimizes	for	these	use	cases
• Over	10,000	RCU	API	uses	in	the	Linux	Kernel!

1. Goal:	Concurrent	reads	even	during	updates
2. Goal:	Low	space	overhead
3. Goal:	Low	execution	overhead



Plan	#1:	spin	locks

• Problem:	Serializes	all	critical	sections
• Read-only	critical	sections	would	have	to	wait	for	
other	read-only	sections	to	finish
• Idea:	Could	we	allow	parallel	readers	but	still	
serialize	writers	with	respect	to	both	readers	and	
others	writers



Plan	#2:	Read-write	locks

• A	modification	to	spin	locks	that	allows	parallel	
reads
• How	to	change	spin	lock	implementation	to	
support	this	feature?



Read-write	lock	implementation
typedef struct { volatile int cnt; } rwlock_t;

void read_lock(rwlock_t *l) {

int x;
while (true) {

x = l->cnt;

if (x < 0) // is write lock held?

continue;
if (CMPXCHG(&l->cnt, x, x + 1))

break;

}
}

void read_unlock(rwlock_t *l) {

ATOMIC_DEC(&l->cnt);

}



Read-write	lock	implementation
typedef struct { volatile int cnt; } rwlock_t;

void write_lock(rwlock_t *l) {

int x;
while (true) {

x = l->cnt;

if (x != 0) // is the lock held?

continue;
if (CMPXCHG(&l->cnt, 0, -1))

break;

}
}

void write_unlock(rwlock_t *l) {

ATOMIC_INC(&l->cnt);

}



Q:	Why	check	before	CMPXCHG?

Why?

typedef struct { volatile int cnt; } rwlock_t;

void write_lock(rwlock_t *l) {

int x;
while (true) {

x = l->cnt;

if (x != 0) // is the lock held?

continue;

if (CMPXCHG(&l->cnt, 0, -1))

break;

}
}

void write_unlock(rwlock_t *l) {

ATOMIC_INC(&l->cnt);

}



Q:	What’s	the	execution	
overhead?



Q:	What’s	the	execution	
overhead?
• Every	reader	uses	CMPXCHG	instruction
• S	->	M	cache	coherence	state	transition
• Find	+	invalidate	messages	for	contended	read_lock()
• And	for	read_unlock()	too!

• If	writer	holds	lock,	readers	must	spin	and	wait
• Violates	goal	of	concurrent	read,	even	during	updates



Plan	#3:	Read-copy-update	(RCU)

• Readers	just	access	objects	directly	(no	locks)
• Writers	make	a	copy	of	object,	change	it,	then	
update	the	pointer	to	the	new	copy

1.	Reader	accesses	object	
directly

3.	Then	writer	updates	
the	pointer

2.	Writer	makes	a	copy	
and	changes	the	data



When	to	free	old	objects?

• At	any	given	moment,	readers	could	be	accessing	the	
latest	copy	or	older	copies	of	an	object
• Idea:	Can	safely	free	objects	when	they	are	no	longer	
“reachable”
• Usually	only	one	pointer	to	an	RCU	object

• Can’t	be	copied,	stored	on	the	stack,	or	in	registers	(except	
inside	critical	sections)

• Need	to	define	a	“quiescent	period”,	after	which	it’s	
safe	to	free
• Wait	until	all	cores	have	passed	through	a	context	switch
• Pointer	can	only	be	dereferenced	inside	a	critical	section
• Read	critical	sections	disable	preemption



Q:	Why	disable	preemption	
during	RCU	read	critical	sections?



Q:	Why	disable	preemption	
during	RCU	read	critical	sections?
• If	we	didn’t,	waiting	for	all	cores	to	context	switch	
wouldn’t	be	an	effective	quiescent	period
• A	task	could	still	hold	a	pointer	to	an	RCU	object	
while	it	is	preempted
• Hard	to	determine	when	its	safe	to	free
• Unless	we	wait	until	all	current	tasks	are	killed

• Need	to	define	a	read	critical	section	such	that	
references	to	RCU	objects	can’t	persist	outside	the	
section



RCU	API	(simplified)

void rcu_read_lock() {
preempt_disable[cpu_id()]++;

}

void rcu_read_unlock() {
preempt_disable[cpu_id()]--;

}

void synchronize_rcu(void) {
for_each_cpu(int cpu)

run_on(cpu);
}



Real	RCU	API

• rcu_read_lock():	Begin	an	RCU	critical	section
• rcu_read_unlock(): End	an	RCU	critical	section
• synchronize_rcu():Wait	for	existing	RCU	critical	sections	to	
complete
• call_rcu(callback,	argument): Call	the	callback	when	existing	
RCU	critical	sections	complete
• rcu_dereference(pointer): Signal	the	intent	to	dereference	a	
pointer	in	an	RCU	critical	section
• rcu_dereference_protected(pointer,	check): signals	the	
intent	to	dereference	a	pointer	outside	of	an	RCU	critical	
section
• rcu_assign_pointer(pointer_addr,	pointer): Assign	a	value	
to	a	pointer	that	is	read	in	RCU	critical	sections



How	to	synchronize	writes?

Against	other	writers:
• Allow	only	one	writer
• Or	just	use	normal	synchronization	like	locks!

Against	readers:	(memory	order	matters)
• Writers	must	fully	finish	writes	to	new	object	before	
updating	pointer
• Readers	must	not	reorder	reads	such	that	contents	of	an	
object	are	read	before	its	pointer	(NOTE:	the	DEC	Alpha	can	
actually	do	this!)
• rcu_dereference() and	rcu_assign_pointer() automatically	
insert	the	appropriate	compiler	and	memory	barriers



Example	RCU	usage

• Imagine	a	simple	online	store
• Need	an	object	to	represent	the	price	of	each	item

typedef struct {
const char *name;
float price;
float discount;

} item_t;
__rcu item_t *item;
lock_t item_lock;

NOTE: total_cost =	price	- discount



Example	RCU	usage	(reader)

float get_cost(void) {
item_t *p;
float cost;
rcu_read_lock();
p = rcu_dereference(item); // read
cost = p->price – p->discount;
rcu_read_unlock();
return cost;

}



Example	RCU	usage	(writer)
void set_cost(float price, float discount) {
item_t *oldp, *newp;
spin_lock(&item_lock);
oldp = rcu_dereference_protected(item, spin_locked(&item_lock));
newp = kmalloc(sizeof(*newp));
*newp = *oldp; // copy
newp->price = price;
newp->discount = discount;
rcu_assign_pointer(item, newp); // update
spin_unlock(&item_lock);
rcu_synchronize();
kfree(oldp); // free

}



RCU	is	a	very	powerful	tool

1. Works	with	more	complex	data	structures	like	
linked	lists	and	hash	tables

2. Most	common	use	case	is	as	an	alternative	to	
read-write	locks

3. Can	be	used	to	wait	for	parallel	work	to	complete
4. Can	be	used	to	elide	reference	counting

See	paper	for	many	more	examples



Does	RCU	achieve	its	goals

1. Goal:	Concurrent	reads	even	during	updates?
• Yes!	Reads	are	never	stalled	by	updates.

2. Goal:	Low	space	overhead?
• Yes!	An	RCU	pointer	is	the	same	size	as	an	ordinary	pointer.	
No	extra	synchronization	data	is	required.

• However,	objects	can’t	be	freed	until	quiescent	period	has	
passed.	Forcing	this	to	happen	immediately	incurs	overhead.

3. Goal:	Low	execution	overhead?
• For	readers,	RCU	has	practically	no	execution	overhead!
• For	writers,	RCU	adds	a	slight	amount	of	overhead	due	to	
allocation,	freeing,	and	copying.	In	practice,	this	overhead	is	
modest.

• Fine-grained	locking	can	help	to	make	updates	concurrent.



Reference	counters

• Counts	number	of	pointer	references	to	an	object
• When	count	reaches	zero,	safe	to	free	object
• Challenge:	involves	true	sharing
• Many	resources	in	kernel	are	reference	counted
• Often	a	scaling	bottleneck	(once	other	bottlenecks	are	
removed)



Standard	approach

typedef struct { int cnt; } kref_t;

void kref_get(kref_t *r) {
WARN_ON(r->cnt == 0);
ATOMIC_INC(&r->cnt);

}

void kref_put(kref_t *r,
void (*release)(kref_t *r)) {

if (ATOMIC_DEC_AND_TEST(&r->cnt))
release(r);

}



What’s	the	execution	overhead?



What’s	the	execution	overhead?

• kref_get()	and	kref_put() both	require	exclusive	
ownership	of	cache-line	(i.e.	place	it	in	M	state)
• Tons	of	cache-line	bouncing	if	object	is	referenced	
frequently



Idea:	Per-cpu reference	counters

• Maintain	an	array	of	counters,	one	per	core
• percpu_ref_get() and	percpu_ref_put() operate	on	
the	local	core’s	array	entry
• Data	written	by	only	one	core,	no	cache-line	bouncing

• percpu_ref_kill() reverts	to	normal,	”shared”	
reference	counting
• Performance	improved	only	if	most	references	
added	and	removed	while	killer’s	reference	remains	
held
• Often	this	is	true!



How	to	implement	kill?

1. Set	shared	refcount to	a	bias	value
2. Atomically	set	a	“kill”	flag	in	shared	refcount
3. Wait	a	quiescent	period,	after	which	flag	is	visible	

to	all	reference	counters
• How?	rcu_synchronize() is	perfect	for	this!

4. Sum	all	refcounts in	per-core	array	and	atomically	
add	total	to	ref	count	in	shared	structure

5. Finally,	atomically	subtract	the	bias	value
6. When	shared	refcount reaches	zero,	free	object



Can	any	program	be	made	
scalable?
• Today	we	saw	two	examples	of	highly	scalable	
algorithms
• But	only	applicable	in	certain	situations
• In	general,	when	is	it	possible	to	make	code	
scalable?



Scalable	commutativity	rule

• rule:	if	two	operations,	commute	then	there	exists	
a	scalable	(conflict-free)	implementation
• intuition:	if	ops	commute,	order	doesn't	matter	
communication	between	ops	must	be	unnecessary
• Caveat:	Scalable	implementations	may	still	be	
possible	for	operations	that	fail	the	rule.	However,	
If	they	pass	the	rule,	scalability	is	definitely	possible
• See	
http://pdos.csail.mit.edu/papers/commutativity:sosp13.pdf



Insight:	The	key	to	scalability	is	
good	interface	design
• Example:	POSIX	requires	open()	system	call	to	
return	the	smallest	available	fd number
• Do	two	open()	calls	commute?
• How	would	you	change	open()	to	make	it	more	
scalable?



Conclusion

• RCU	enables	zero-cost	read-only	access	at	the	
expense	of	slightly	more	expensive	updates
• Very	useful	for	read-mostly	data	(extremely	common	in	
kernels)

• Reference	counting	can	be	almost	free	in	cases	
where	objects	are	long-lived	and	one	task	can	be	
designated	as	the	killer
• Per-CPU	refcounting sacrifices	space	for	speed

• Scalable	commutativity	rule	provides	guideline	for	
designing	scalable	interfaces
• Operations	in	both	RCU	and	Per-CPU	refcount commute!


