
Scalable	Locking
Adam	Belay	<abelay@mit.edu>



Problem:	Locks	can	ruin	
performance

0

200

400

600

800

1000

1200

o
p
e
n
s
/m

s
0 6 12 18 24 30 36 42 48

Cores

(a) Collapse for FOPS.

0

100

200

300

400

500

m
m
a
p
s
/m

s

0 6 12 18 24 30 36 42 48

Cores

(b) Collapse for MEMPOP.

0

3

6

9

12

fi
n
d
s
/s
e
c

0 6 12 18 24 30 36 42 48

Cores

(c) Collapse for PFIND.

0

2500

5000

7500

10000

m
es
sa
g
es
/s
ec

0 6 12 18 24 30 36 42 48

Cores

(d) Collapse for EXIM.

Figure 2: Sudden performance collapse with ticket locks.

Benchmark Operation time Top lock instance name Acquires per Average critical section % of operation in
(cycles) operation time (cycles) critical section

FOPS 503 d_entry 4 92 73%
MEMPOP 6852 anon_vma 4 121 7%
PFIND 2099 M address_space 70 K 350 7%
EXIM 1156 K anon_vma 58 165 0.8%

Figure 3: The most contended critical sections for each Linux microbenchmark, on a single core.

4

Locking	overhead	dominates



Problem:	Locks	can	ruin	
performance
• the	locks	themselves	prevent	us	from	harnessing	
multi-core	to	improve	performance
• this	"non-scalable	lock"	phenomenon	is	important	
why	it	happens	is	interesting	and	worth	
understanding
• the	solutions	are	clever	exercises	in	parallel	
programming

Locking	bottleneck	caused	by	interaction	with	
multicore	caching



Recall	picture	from	last	time

CPU	0 CPU	1 CPU	2 CPU	3

RAM

bus

LOCK	(e.g.	XCHG)



Not	how	multicores	actually	work

• RAM	is	much	slower	than	processor,	need	to	cache	
regions	of	RAM	to	compensate
• Cache	Consistency: order of	reads	and	writes	
between	memory	locations
• Cache	Coherence: data	movement caused	by	reads	
and	writes	for	a	single	memory	location



Imagine	this	picture	instead…

CPU	0 CPU	1 CPU	2 CPU	3

RAM

bus

LOCK	(e.g.	XCHG)

Cache Cache Cache Cache



How	does	cache	coherence	work?

• Many	different	schemes	are	possible
• Here’s	a	simple	but	relevant	one:
• Divide	cache	into	fixed-sized	chunks	called	“cache-lines”
• Each	cache-line	is	64	bytes	and	in	one	of	three	states:	
(M)odified,	(S)hared,	or	(I)nvalid

• Cores	exchange	messages	as	they	read	and	write
• invalidate(addr):	delete	from	your	cache
• find(addr):	does	any	core	have	a	copy?
• all	messages	are	broadcast	to	all	cores



MSI	state	transitions

Invalid:
• On	CPU	read ->		find,	Shared
• On	CPU	write	->	find,	invalidate,	Modified
• On	message	find,	invalidate	->	do	nothing



MSI	state	transitions

Shared:
• On	CPU	read,	find	->		do	nothing
• On	CPU	write	->	invalidate,	Modified
• On	message	invalidate	->	Invalid



MSI	state	transitions

Modified:
• On	CPU	read	and	write	->		do	nothing
• On	message	find	->	Shared
• On	message	invalidate	->	Invalid



Compatibility	of	states	between	
cores

M S I
M N N Y
S N Y Y
I Y Y Y

Invariants:
• At	most	one	core	can	be	in	M state
• Either	one	M or	many	S,	never	both



What	access	patterns	work	well?



What	access	patterns	work	well?

• Read	only	data:	S allows	every	core	to	keep	a	copy
• Data	written	multiple	times	by	a	core:	M gives	
exclusive	access,	reads	and	writes	are	free	basically	
after	first	state	transition



Still	a	simplification

• Real	CPUs	use	more	complex	state	machines
• Why?	Fewer	bus	messages,	no	broadcasting,	etc.

• Real	CPUs	have	complex	interconnects
• Buses	are	broadcast	domains,	can’t	scale
• On-chip	network	for	communication	within	die

• Data	sent	in	special	packets	called	“flits”
• Off-chip	network	for	communication	between	dies

• E.g.	Intel	QPI	(Quick-Path	Interconnect)

• Real	CPUs	have	“Cache	Directories”
• Central	structure	that	tracks	which	CPUs	have	copies	of	data

• Take	6.823!



Real	caches	are	hierarchical

Core

L1D L1C

L2

LLC

Core

L1D L1C

L2

<	1	cycle

3	cycles

11	cycles

44	cycles

355	cycles RAM

128	bytes

2x32	KB

256	KB

4	MB

Many	GBs

Latency Capacity



Why	locks	if	we	have	cache	
coherence?



Why	locks	if	we	have	cache	
coherence?
• cache	coherence	ensures	that	cores	read	fresh	data
• locks	avoid	lost	updates	in	read-modify-write	cycles	
and	prevent	anyone	from	seeing	partially	updated	
data	structures



Locks	are	built	from	atomic	
instructions
• So	far	we	so	XCHG	in	xv6	and	JOS
• Many	other	atomic	ops,	including	add,	test-and-set,	
CAS,	etc.
• How	does	hardware	implement	locks?
• Get	the	line	in	M state
• Defer	coherence	messages
• Do	all	the	steps	(read	and	write)
• Resume	handling	messages



Locking	performance	criteria

• Assume	N	cores	are	waiting	for	a	lock
• How	long	does	it	take	to	hand	off	from	previous	to	
next	holder?
• Bottleneck	is	usually	the	interconnect
• So	measure	cost	in	terms	of	#	of	messages

• What	can	we	hope	for?
• If	N	cores	waiting,	get	through	them	all	in	O(N)	time
• Each	handoff	takes	O(1)	time;	does	not	increase	with	N



Test	&	set	spinlocks	(xv6/JOS)

struct lock { int locked; };

acquire(l){
while(1){

if(!xchg(&l->locked, 1))
break;

}
}

Release(l){
l->locked = 0;

}



Test	&	set	spinlocks	(xv6/JOS)

• Spinning	cores	repeatedly	execute	atomic	exchange
• Is	this	a	problem?
• Yes!

• It’s	okay	if	waiting	cores	waste	their	own	time
• But	bad	if	waiting	cores	slow	lock	holder!

• Time	for	critical	section	and	release:
• Holder	must	wait	in	line	for	access	to	bus
• So	holder’s	handoff	takes	O(N)	time

• O(N)	handoff	means	all	N	cores	take	O(N2)!



Ticket	locks	(Linux)

• Goal:	read-only	spinning	rather	than	repeated	
atomic	instructions
• Goal:	fairness	->	waiter	order	preserved
• Key	idea:	assign	numbers,	wake	up	one	waiter	at	a	
time



Ticket	locks	(Linux)

struct lock {
int current_ticket; int next_ticket; 

} 

acquire(l) { 
int t = atomic_fetch_and_inc(&l->next_ticket); 
while (t != l->current_ticket) ; /* spin */ 

}

void release(l) { 
l->current_ticket++;

} 



Ticket	lock	time	analysis

• Atomic	increment	– O(1)	broadcast	message
• Just	once,	not	repeated

• Then	read-only	spin,	no	cost	until	next	release
• What	about	release?
• Invalidate	message	sent	to	all	cores
• Then	O(N)	find	messages,	as	they	re-read

• Oops,	still	O(N)	handoff	work!
• But	fairness	and	less	bus	traffic	while	spinning



TAS	and	Ticket	are	“non-
scalable”	locks
Cost	of	handoff	scales	with	number	of	waiters



Let’s	consider	figure	2	again

0

200

400

600

800

1000

1200

o
p
e
n
s
/m

s
0 6 12 18 24 30 36 42 48

Cores

(a) Collapse for FOPS.

0

100

200

300

400

500

m
m
a
p
s
/m

s

0 6 12 18 24 30 36 42 48

Cores

(b) Collapse for MEMPOP.

0

3

6

9

12

fi
n
d
s
/s
e
c

0 6 12 18 24 30 36 42 48

Cores

(c) Collapse for PFIND.

0

2500

5000

7500

10000

m
es
sa
g
es
/s
ec

0 6 12 18 24 30 36 42 48

Cores

(d) Collapse for EXIM.

Figure 2: Sudden performance collapse with ticket locks.

Benchmark Operation time Top lock instance name Acquires per Average critical section % of operation in
(cycles) operation time (cycles) critical section

FOPS 503 d_entry 4 92 73%
MEMPOP 6852 anon_vma 4 121 7%
PFIND 2099 M address_space 70 K 350 7%
EXIM 1156 K anon_vma 58 165 0.8%

Figure 3: The most contended critical sections for each Linux microbenchmark, on a single core.

4



Reasons	for	collapse

• Critical	section	takes	just	7%	of	request	time
• So	with	14	cores,	you’d	expect	just	one	core	wasted	by	
serial	execution

• So	it’s	odd	that	the	collapse	happens	so	soon
• However,	once	cores	waiting	for	unlock	is	
substantial,	critical	section	+	handoff	takes	longer
• Slower	handoff	time	makes	N	grow	even	further



Perspective

Consider:
acquire(&l); x++; release(&l);

• uncontended:	~40	cycles
• if	a	different	core	used	the	lock	last:	~100	cycles
• With	dozens	of	cores:	thousands	of	cycles



So	how	can	we	make	locks	scale?

• Goal:	O(1)	message	release	time
• Can	we	wake	just	one	core	at	a	time?
• Idea:	Have	each	core	spin	on	a	different	cache-line



MCS	Locks

• Each	CPU	has	a	qnode structure	in	its	local	memory
typedef struct qnode {

struct qnode *next;
bool locked;

} qnode;

• A	lock	is	a	qnode pointer	to	the	tail	of	the	list
• While	waiting,	spin	on	local	locked	flag



MCS	locks

Owner Waiter Waiter NULL

*L



Acquiring	MCS	locks

acquire	(qnode *L,	qnode *I)	{	
I->next	=	NULL;	
qnode *predecessor	=	I;	
XCHG	(*L,	predecessor);	
if	(predecessor	!=	NULL)	{

I->locked	=	true;
predecessor->next	=	I;
while	(I->locked)	;

}
}



Releasing	MCS	locks

release	(lock	*L,	qnode *I)	{	
if (!I->next) 

if (CAS	(*L,	I,	NULL))
return;	

while	(!I->next)	;
I->next->locked	=	false;

}

 



Locking	strategy	comparison

0

500

1000

1500

T
h
ro
u
g
h
p
u
t
(a
cq
u
ir
es
/m

s)

0 2 6 12 18 24 30 36 42 48

Cores

Ticket lock
MCS lock
CLH lock

Proportional lock

K42 lock

Figure 10: Throughput for cores acquiring and releasing
a shared lock. Results start with two cores.

CLH lock. The CLH lock [5] is a variant of an MCS
lock where the waiter spins on its predecessor qnode,
which allows the queue of waiters to be implicit (i.e., the
qnode next pointer and its updates are unnecessary).

HCLH lock. The HCLH lock [8] is a hierarchical vari-
ant of the CLH lock, intended for NUMA machines. The
way we use it is to favor lock acquisitions from cores
that share an L3 cache with the core that currently holds
the lock, with the goal to reduce the cost of cache line
transfers between remote cores.

4.2 Results

Figure 10 shows the performance of the ticket lock, pro-
portional lock, MCS lock, K42 lock, and CLH lock on
our 48-core AMD machine. The benchmark uses one
shared lock. Each core loops, acquires the shared lock,
updates 4 shared cache lines, and releases the lock. The
time to update the 4 shared cache lines is similar between
runs using different locks, and increases gradually from
about 800 cycles on 2 cores to 1000 cycles in 48 cores.
On our x86 multicore machine, the HCLH lock improves
performance of the CLH lock by only 2%, and is not
shown.

All scalable locks scale better than ticket lock on this
benchmark because they avoid collapse. Using the CLH
lock results in slightly higher throughput over the MCS
lock, but not by much. The K42 lock achieves lower

Lock type Single Single Shared
acquire release acquire

MCS lock 25.6 27.4 53
CLH lock 28.8 3.9 517
Ticket lock 21.1 2.4 30
Proportional lock 22.0 2.8 30.2
K42 lock 47.0 23.8 74.9

Figure 11: Performance of acquiring and releasing an
MCS lock, a CLH lock, and a ticket lock. Single ac-
quire and release are measurements for one core. Shared
acquire is the time for a core to acquire a lock recently
released by another core. Numbers are in cycles.

throughput than the MCS lock because it incurs an addi-
tional cache miss on acquire. These results indicate that
for our x86 multicore machine, it does not matter much
which scalable lock to choose.

We also ran the benchmarks on a multicore machine with
Intel CPUs and measured performance trends similar to
those shown in Figure 10.

Another concern about different locks is the cost of lock
and unlock. Figure 11 shows the cost for each lock
in the uncontended and contended case. All locks are
relatively inexpensive to acquire on a single core with
no sharing. MCS lock and K42 lock are more expensive
to release on a single core, because, unlike the other
locks, they use atomic instructions to release the lock.
Acquiring a shared but uncontended lock is under 100
cycles for all locks, except the CLH lock. Acquiring the
CLH lock is expensive due to the overhead introduced
by the qnode recycling scheme for multiple cores.

5 Using MCS locks in Linux

Based on the result of the previous section, we replaced
the offending ticket locks with MCS locks. We first
describe the kernel changes to use MCS locks, and then
measure the resulting scalability for the 4 benchmarks
from Section 2.

5.1 Using MCS Locks

We replaced the three ticket spin locks that limited
benchmark performance with MCS locks. We modi-
fied about 1,000 lines of the Linux kernel (700 lines
for d_entry, 150 lines for anon_vma, and 150 lines for
address_space).

9



But	not	a	panacea

0

200

400

600

800

1000

1200

T
h
ro
u
g
h
p
u
t
(o
p
e
n
s/
m
s)

0 6 12 18 24 30 36 42 48

Cores

Ticket lock
MCS lock

(a) Performance for FOPS.

0

100

200

300

400

500

T
h
ro
u
g
h
p
u
t
(m
m
a
p
s/
m
s)

0 6 12 18 24 30 36 42 48

Cores

Ticket lock
MCS lock

(b) Performance for MEMPOP.

0

3

6

9

12

T
h
ro
u
g
h
p
u
t
(fi
n
d
s/
se
c)

0 6 12 18 24 30 36 42 48

Cores

Ticket lock
MCS lock

(c) Performance for PFIND.

0

2500

5000

7500

10000

T
h
ro
u
g
h
p
u
t
(m

es
sa
g
es
/s
ec
)

0 6 12 18 24 30 36 42 48

Cores

Ticket lock
MCS lock

(d) Performance for EXIM.

Figure 12: Performance of benchmarks using ticket locks and MCS locks.

As noted earlier, MCS locks have a different API than the
Linux ticket spin lock implementation. When acquiring
an MCS lock, a core must pass a qnode variable into
mcs_lock, and when releasing that lock the core must
pass the same qnode variable to mcs_unlock. For each
lock a core holds, the core must use a unique qnode, but
it is acceptable to use the same qnode for locks held at
different times.

Many of our kernel modifications are straightforward.
We allocate an MCS qnode on the stack, replace
spin_lock and spin_unlock with mcs_lock and
mcs_unlock, and pass the qnode to the MCS acquire
and release functions.

In some cases, the Linux kernel acquires a lock in one
function and releases it in another. For this situation,
we stack-allocate a qnode on the call frame that is an
ancestor of both the call frame that calls mcs_lock and
the one that calls mcs_release. This pattern is common

in the directory cache, and partially explains why we
made so many modifications for the d_entry lock.

Another pattern, which we encountered only in the di-
rectory cache code that implements moving directory
entries, is changing the value of lock variables. When
the kernel moves a d_entry between two directories, it
acquires the lock of the d_entry->d_parent (which is
also a d_entry) and the target directory d_entry, and
then sets the value d_entry->d_parent to be the tar-
get d_entry. With MCS, we must make sure to unlock
d_entry->d_parent with the qnode originally used to
lock the target d_entry, instead the qnode original used
to lock d_entry->d_parent.

5.2 Results

The graphs in Figure 12 show the benchmark results from
replacing contended ticket locks with MCS locks. For a

10



Conclusion

• Scalability	is	limited	by	length	of	critical	section
• Scalable	locks	can	only	avoid	collapse
• Preferable	to	use	algorithms	that	avoid	contention	
all	together
• Example	in	next	lecture!


