Scalable Locking

Adam Belay <abelay@mit.edu>

Problem: Locks can ruin
performance

12

Locking overhead dominates

finds/sec

Cores

Problem: Locks can ruin
performance

* the locks themselves prevent us from harnessing
multi-core to improve performance

 this "non-scalable lock” phenomenon is important
why it happens is interesting and worth
understanding

* the solutions are clever exercises in parallel
programming

Locking bottleneck caused by interaction with
multicore caching

Recall picture from last time

CPUO CPU 1 CPU 2 CPU 3
s

bus <
A \

LOCK (e.g. XCHG)

Not how multicores actually work

* RAM is much slower than processor, need to cache
regions of RAM to compensate

e Cache Consistency: order of reads and writes
between memory locations

* Cache Coherence: data movement caused by reads
and writes for a single memory location

Imagine this picture instead...

CPUO
Cache

bus <

- LOCK (e g. XCHG)

How does cache coherence work?

* Many different schemes are possible

* Here’s a simple but relevant one:
* Divide cache into fixed-sized chunks called “cache-lines”
e Each cache-line is 64 bytes and in one of three states:
(M)odified, (S)hared, or (I)nvalid
* Cores exchange messages as they read and write
* invalidate(addr): delete from your cache
* find(addr): does any core have a copy”?
 all messages are broadcast to all cores

MSI state transitions

Invalid:

* On CPU read -> find, Shared

* On CPU write -> find, invalidate, Modified
* On message find, invalidate -> do nothing

MSI state transitions

Shared:

* On CPU read, find -> do nothing

* On CPU write -> invalidate, Modified
* On message invalidate -> Invalid

MSI state transitions

Modified:
* On CPU read and write -> do nothing

* On message find -> Shared
* On message invalidate -> Invalid

Compatibility of states between
cores

M S |

M|N N Y

S |N Y Y

| |Y Y Y
Invariants:

e At most one core can be in M state
* Either one M or many S, never both

What access patterns work well?

What access patterns work well?

* Read only data: S allows every core to keep a copy

e Data written multiple times by a core: M gives
exclusive access, reads and writes are free basically
after first state transition

Still a simplification

* Real CPUs use more complex state machines
 Why? Fewer bus messages, no broadcasting, etc.

* Real CPUs have complex interconnects

e Buses are broadcast domains, can’t scale

* On-chip network for communication within die
* Data sent in special packets called “flits”

* Off-chip network for communication between dies
* E.g. Intel QPI (Quick-Path Interconnect)

* Real CPUs have “Cache Directories”
e Central structure that tracks which CPUs have copies of data

e Take 6.823!

Real caches are hierarchical

Latency L N Capacity

<1 cycle 128 bytes
< y | 4

3 cycles 2x32 KB

11 cycles 256 KB

44 cycles 4 MB

355 cycles Many GBs

Why locks if we have cache
coherence?

Why locks if we have cache
coherence?

e cache coherence ensures that cores read fresh data

* locks avoid lost updates in read-modify-write cycles
and prevent anyone from seeing partially updated
data structures

Locks are built from atomic
INnstructions

e So far we so XCHG in xv6 and JOS

* Many other atomic ops, including add, test-and-set,
CAS, etc.

* How does hardware implement locks?
* Get the line in M state
* Defer coherence messages
* Do all the steps (read and write)
 Resume handling messages

Locking performance criteria

* Assume N cores are waiting for a lock

* How long does it take to hand off from previous to
next holder?

* Bottleneck is usually the interconnect
* So measure cost in terms of # of messages

* What can we hope for?
* If N cores waiting, get through them all in O(N) time
* Each handoff takes O(1) time; does not increase with N

Test & set spinlocks (xv6/JOS)

struct lock { int locked; };

acquire(l){

while(1){
if(!xchg(&l->locked, 1))

break;

}
}

Release(1){
1->locked = ©;
}

Test & set spinlocks (xv6/JOS)

* Spinning cores repeatedly execute atomic exchange

* Is this a problem?
* Yes!

* It’s okay if waiting cores waste their own time
e But bad if waiting cores slow lock holder!
* Time for critical section and release:

 Holder must wait in line for access to bus
* So holder’s handoff takes O(N) time

* O(N) handoff means all N cores take O(N?)!

Ticket locks (Linux)

e Goal: read-only spinning rather than repeated
atomic instructions

e Goal: fairness -> waiter order preserved

* Key idea: assign numbers, wake up one waiter at a
time

Ticket locks (Linux)

struct lock {
int current ticket; int next ticket;

¥

acquire(l) {
int t = atomic_fetch_and inc(&l->next ticket);
while (t != 1->current _ticket) ; /* spin */

¥

void release(l) {
1->current_ticket++;

¥

Ticket lock time analysis

* Atomic increment — O(1) broadcast message
* Just once, not repeated

* Then read-only spin, no cost until next release

e What about release?

* Invalidate message sent to all cores
 Then O(N) find messages, as they re-read

* Qops, still O(N) handoff work!
e But fairness and less bus traffic while spinning

TAS and Ticket are “non-
scalable” locks

Cost of handoff scales with number of waiters

Let’s consider figure 2 again

12

finds/sec

Cores

36

42

48

Reasons for collapse

* Critical section takes just 7% of request time

e So with 14 cores, you'd expect just one core wasted by
serial execution

* So it’s odd that the collapse happens so soon

* However, once cores waiting for unlock is
substantial, critical section + handoff takes longer

* Slower handoff time makes N grow even further

Perspective

Consider:
acquire(&l); x++; release(&l);

e uncontended: ~40 cycles
e if a different core used the lock last: ~100 cycles
* With dozens of cores: thousands of cycles

So how can we make locks scale?

e Goal: O(1) message release time
* Can we wake just one core at a time?
 |dea: Have each core spin on a different cache-line

MCS Locks

* Each CPU has a gnode structure in its local memory
typedef struct gnode {

struct gnode *next;
bool locked;

} gnode;

* Alock is a gnode pointer to the tail of the list
* While waiting, spin on local locked flag

MCS locks

Waiter Waiter NULL

Acquiring MCS locks

acquire (gnode *L, gnode *1) {

I->next = NULL,;

qnode *predecessor = |;

XCHG (*L, predecessor);

if (predecessor != NULL) {
I->locked = true;
predecessor->next = |;
while (I->locked) ;

Releasing MCS locks

release (lock *L, gnode *1) {
if (!l->next)
if (CAS (*L, I, NULL))
return;
while (!I->next) ;
|->next->locked = false;

Throughput (acquires/ms)

Locking strategy comparison

1500

1000

500

—=— Ticket lock —— Proportional lock
—a— MCS lock —s— K42 lock
—e— CLH lock

18 24 30 36 42 48

Cores

Throughput (finds/sec)

But not a panacea

12 B

—sa— Ticket lock
—a— MCS lock

Cores

Conclusion

 Scalability is limited by length of critical section
* Scalable locks can only avoid collapse

* Preferable to use algorithms that avoid contention
all together

* Example in next lecture!

