
Using Compositional Embeddings for Fact Checking

Ana Alexandra Morim da Silva[0000−0002−1614−2391], Michael
Röder[0000−0002−8609−8277], and Axel-Cyrille Ngonga Ngomo[0000−0001−7112−3516]

DICE group, Department of Computer Science, Paderborn University, Germany
{michael.roeder|axel.ngonga}@uni-paderborn.de

Abstract. Unsupervised fact checking approaches for knowledge graphs com-
monly combine path search and scoring to predict the likelihood of assertions
being true. Current approaches search for said metapaths in the discrete search
space spanned by the input knowledge graph and make no use of continuous
representations of knowledge graphs. We hypothesize that augmenting existing
approaches with information from continuous knowledge graph representations
has the potential to improve their performance. Our approach ESTHER searches
for metapaths in compositional embedding spaces instead of the graph itself.
By being able to explore longer metapaths, it can detect supplementary evi-
dence for assertions being true that can be exploited by existing fact checking
approaches. We evaluate ESTHER by combining it with 10 other approaches in
an ensemble learning setting. Our results agree with our hypothesis and sug-
gest that all other approaches can benefit from being combined with ESTHER

by 20.65% AUC-ROC on average. Our code is open-sourceand can be found at
at https://github.com/dice-group/esther.

1 Introduction

Large knowledge graphs (KGs) such as the Google Knowledge Graph [23], DBpe-
dia [3], and WikiData [18] are now of the backend of a growing number of data-driven
applications including Web search [23], community-support systems [2] and personal
assistants [18] with several billion users in total. Ensuring the veracity of the assertions
in such KGs has hence become mission-critical for the KG community. However, the
sheer size of most KGs makes a manual verification difficile. Consequently, automated
methods for ensuring the veracity of the assertions found in knowledge graphs (called
fact validation [21] or fact checking [9]) are becoming indispensable.

Unsupervised fact checking approaches for KGs commonly combine path search
and scoring to predict the likelihood of assertions being true [28]. To achieve this goal,
several approaches rely on identifying metapaths [25,33,13] or corroborative paths [28]
that are correlated with the predicate of the assertion to check. State-of-the-art ap-
proaches search for paths in the discrete search space spanned by the input KG graph
and make no use of continuous representations, i.e., embeddings of KGs [4,16,24,31,7].
We hypothesize that augmenting existing approaches with embeddings has the poten-
tial to improve their performance. Our approach ESTHER searches for metapaths by
exploiting a compositional embedding of the input KG instead of the discrete represen-
tation of the graph. By being able to explore longer metapaths, it can detect supplemen-
tary evidence for assertions being true that can be exploited by existing fact checking

https://github.com/dice-group/esther

approaches. We evaluate ESTHER by combining it with 10 other approaches in an en-
semble learning setting. The results we obtained on the benchmark datasets FB15k-237
and WN18RR corroborate our hypothesis and suggest that nearly all other approaches
benefit from being combined with ESTHER by 20.65% AUC-ROC on average.

The rest of this paper is structured as follows. In the next section, related work is
described. Section 3 describes preliminaries for our approach, which is presented in
Section 4. Section 5 describes our evaluation and presents our results, which are further
discussed in Section 6. Section 7 concludes the paper.

2 Related Work

Fact checking approaches can be divided into (1) approaches that rely on unstruc-
tured textual sources [9,14,27] and (2) approaches that use structured reference knowl-
edge [4,21,22,24]. In this work, we focus on the second category of approaches—
especially on those approaches that use a knowledge graph as reference. Path-based
approaches regard a given KG as a labeled directed graph with entities as nodes and
relations as edges connecting these nodes. Given an assertion in the form of a triple
(s, p, o), Ciampaglia et al. [6] propose to search within the reference KG for the shortest
paths up to length k that (1) connect s and o, and (2) are semantically similar to p. Their
Knowledge Linker (KL) system measures this similarity based on the specificity of the
path, i.e., the degree of intermediate nodes of the path. Shiralkar et al. [22] extend this
idea by using the co-occurrence of properties to calculate their similarity. They propose
KL-Rel as an extension of KL and Knowledge Stream (KS), which relies on multiple
paths and the maximum flow between s and o. They compare their approaches with
other approaches to rank paths proposed by Jeh et al. [10], Katz [12] and Xu et al. [32],
and approaches that measure the similarity between two entities proposed by Adamic
et al. [1], Liben-Nowell et al. [15] and Shi et al. [20]. Syed et al. [28] propose the usage
of RDF Schema information, i.e., the domain and range of p. Their approach COPAAL
identifies metapaths between s and o and uses the domain and range information of p to
identify the set of possible subjects and objects for p in the knowledge graph. Based on
this information, it approximates the normalized pointwise mutual information between
the metapaths and p to identify paths that corroborate the given fact.

In contrast to these unsupervised approaches, several supervised approaches rely-
ing on metapaths have been proposed [25,33,13]. For example, Lao et al. [13] present
PRA, which searches for metapaths in the knowledge graph and extracts features with
these paths to train a classifier. While these metapaths have to be extracted manually
by experts, Shi et al. [21] propose a method to automatically extract metapaths—called
anchored predicate paths—given a set of labeled examples. Their approach PredPath
relies on the rdf:type information contained in the input knowledge graph. All these
path-based approaches are limited to shorter paths. Most of them have not been evalu-
ated beyond a length of 3 predicates. This is caused by the large amount of longer paths
that exist between s and o which lead to very high run times. Li et al. [14] propose Facty
that combines evidence from different sources. Facty searches for single triples within
the reference knowledge graph that contain s and o but may have a different predicate.
These triples are used as pieces of evidence. In contrast to the previously mentioned

approaches, Facty takes also textual sources into account. The extracted triples are com-
bined with evidence from other sources like web searches, query logs and web tables.
The authors propose a knowledge fusion algorithm that takes the pieces of evidence and
information about their sources as input to calculate a final veracity score.

A related field of research which already makes use of knowledge graph embed-
dings is the area of link prediction [4,16,24,31]. However, the problems of link predic-
tion and fact checking are different. In link prediction, the goal is to compute how likely
it is that any assertion whose subject, predicate and object belong to the input graph G
should belong to a complete version of G [19]. Fact checking focuses on checking a sin-
gle, given assertion based on the given graph [9,22,27,28]. Key difference between these
two fields also include their runtimes and applications.Fact checking algorithms are typ-
ically used in online scenarios while link prediction algorithms are used offline [28].

3 Preliminaries

This section introduces concepts that are necessary to understand our approach. It cov-
ers the definitions of RDF knowledge graphs, corroborative paths [28] and knowledge
graph embeddings [4,26,17].

Definition 1 (RDF knowledge graph). Let E,B,P,L be the sets of all RDF resources,
blank nodes, RDF predicates, and literals, respectively. Let E,B and L be mutually
disjoint and P ⊂ E. An RDF KG G is defined as a set of RDF triples of the form
(s, p, o) with G ⊂ (E ∪ B)× P× (E ∪ B ∪ L).

G can be regarded as a labeled directed graph, with triples being directed edges labeled
with the property p, with the nodes s as head and o as tail. We define inverted edges
by means of the inverse property p−1 for an existing property p as follows: (s, p, o) ⇔
(o, p−1, s).

3.1 Corroborative Paths

Definition 2 (Path). A path of length k in a knowledge graph G is a sequence of triples
from G of the form (v0, p1, v1), (v1, p2, v2), ..., (vk−1, pk, vk) [28].

Several paths can exist between two nodes v0 and vk. We use πk(v0, vk) to denote
these paths. Following [28], we define γ as a function from E ∪ P ∪ B ∪ L to the set
of all RDFS classes, where γ(v) is the set of all RDFS classes that v is an instance
of. For example, if the RDFS classes (also called types) that could be inferred from
a given graph G for the entity BarackObama using RDFS semantics were exactly
Person, Politician and OfficeHolder, we would write γ(BarackObama) =
{ Person, Politician, OfficeHolder}. Let λ be a function that maps a given
set of types tx to a set of resources that are instances of at least one element of tx by
virtue of RDFS semantics.

Definition 3 (Typed paths). The set of typed paths Πk
(tx,ty)

of length k between ver-
tices of types tx and ty in a knowledge graph G are defined as follows [28]:

Πk
(tx,ty)

= {πk(v0, vk) | tx ⊆ γ(v0) ∧ ty ⊆ γ(vk)}. (1)

These paths can be further restricted by using a vector of properties q⃗ = q1, . . . , qk:

Definition 4 (q⃗-restricted typed paths). The set of q⃗-restricted typed paths Πk
(tx,ty),q⃗

⊆
Πk

(tx,ty)
is defined as follows [28]:

Πk
(tx,ty),q⃗

=
{
πk(v0, vk)

∣∣ πk(v0, vk) ∈ Πk
(tx,ty)

,

∀i ∈ [0, k − 1] : (vi, pi+1, vi+1) ∈ πk(v0, vk) → pi+1 = qi+1

}
.

(2)

This is the set of typed paths that have exactly the properties of q⃗ as predicates of
the sequence of triples the paths consist of. These paths are used by Syed et al. [28]
to identify paths that corroborate the correctness of the given fact (s, p, o). To define
the set of corroborative paths, we use R(p) to denote the set of all types t so that p
rdfs:range t can be inferred from the input knowledge graph using RDFS seman-
tics. We also account for the practical use of our approach by considering the set R′(p),
which we defined as the set of classes such that the assertion p rdfs:range t is
explicitly stated in the input knowledge graph. D(p) and D′(p) are defined analogously
for rdfs:domain.

Definition 5 (Corroborative paths). The corroborative paths for a predicate p are de-
fined as follows [28]:

Πk(p) =

k⋃
j=1

Πj
(D(p),R(p)). (3)

3.2 Knowledge Graph Embeddings

KGs are a discrete representation of knowledge. They can be embedded into a contin-
uous space via a knowledge graph embedding (KGE). Various algorithms have been
proposed to generate KGEs. Because our approach assumes that a KGE has already
been generated and due to the limited space, we focus on the features of the generated
KGEs and refrain from presenting much details on the single algorithms that generate
them.1 Each KGE used in this paper comes with a number of dimensions in the embed-
ding space (n) and a mapping function e(·) that maps an RDF resource of G to a vector
representation within the embedding space.

Definition 6 (Compositional KGE). Let p1,p2 and p3 be properties and x, y, z be
nodes in the KG. A KGE is compositional if the following holds:

(x, p1, y) ∧ (y, p2, z) ⇒ (x, p3, z) (∀x, y, z)
⇔ e(p1)⊕ e(p2) ≈ e(p3)

(4)

where ⊕ is an operator that combines the embedding vectors of two properties.

We base our search for paths in an embedding space on the compositionality assump-
tion. Hence, we work with the following compositional KGE algorithms: TransE [4],
RotatE [26], DensE [17].

1 We refer to [30] for a survey of KGE techniques.

Table 1. Summary of the KGE related operations used by ESTHER and their implementation
in TransE, RotatE and DensE. ◦ denotes the Hadamard product, ⊗ the Hamilton product, e the
complex conjugate and e(p)−1 the inverse of a quaternion.

Mapping function Composition Inversion

ESTHER e(·) e(p1)⊕ e(p2) e(p−1)

TransE E→ Rn e(p1) + e(p2) −e(p)
RotatE E→ Cn e(p1) ◦ e(p2) e(p)
DensE E→ Hn e(p1)⊗ e(p2) e(p)−1

TransE represents the property p in an assertion (s, p, o) as a translation from s to
o. This is accomplished through the minimization of the L1 or L2 norm between the
e(s) + e(p) and e(o) [4]. The model attempts to maximize the score function

δTransE = −||e(s) + e(p)− e(o)||. (5)

RotatE models the predicate p in an assertion (s, p, o) as a rotation. The predicates
are represented as complex numbers. Like TransE, RotatE also aims to approximate the
subject and predicate vector with the object entity’s vector. e the complex conjugate.

δRotatE = −||e(s) ◦ e(p)− e(o)|| (6)

||e(·)|| =
n∑
i

||e(·)i|| =
n∑
i

∣∣∣∣√e(·)ie(·)i
∣∣∣∣ (7)

DensE also represents predicates as rotations from the subject to the object entity.
However, it does so by considering 3D rotations followed by a scaling factor on the
subject entity. The predicates are therefore represented by quaternions. The quaternion
modelling allows for non-abelian composition patterns, dependent on the operation di-
rection. The dissimilarity function used is the L2-norm. O(·) denotes the transformation
applied on the entity such that e(o)i = O(e(p)i)e(s)i.

δDensE = −1

2

(
||O(e(p))e(s)− e(o)||+ ||O(e(p)−1)e(o)− e(s)||

)
(8)

4 Approach

4.1 Intuition

ESTHER is built on the assumption that existing paths between s and o can corroborate
the existence of the triple (s, p, o). Hence, it searches for corroborative paths Πk(p) as
suggested by Syed et al. [28]. However, in contrast to the state of the art, ESTHER per-
forms this search in a continuous space. There, the embedding of corroborative paths
have a similar direction and length as the embedding of p. ESTHER identifies candi-
dates for corroborative paths by utilizing the A* search algorithm. In a second step, the

identified paths are scored based on their statistical co-occurrence with p. Paths that
corroborate the occurrence of p are used as corroborative paths in the third step. This fi-
nal step checks whether the given subject s and object o are connected with these paths.
In the following, we describe the three steps in more detail.

4.2 Combining Properties to Paths

ESTHER’s main objective is to assess the veracity of a given triple (s, p, o) by leveraging
a compositional embedding model of the reference graph to find corroborative paths for
the property p. These paths are searched in the embedding space. A good candidate for
a corroborative path is a q-restricted path that (1) connects the domain and range of p
and (2) has an embedding that is similar to the embedding of p. The embedding of the
path is computed by combining the embeddings of the properties in q⃗:

|q⃗|⊕
i=1

e(qi) ≈ e(p) (9)

Previous approaches showed that it is beneficial for the path search to be able to use
the directed edges between two vertices in both directions [22,28]. ESTHER leverages
this idea by considering inverse properties for all p with ∀(s, p, o) ∈ G,∃(o, p−1, s).
As such, a set of inverse properties is defined as P−1

G = {p−1∀p ∈ PG} and the joint
set P∗

G = PG ∪ P−1
G to aid in bidirectional path-finding.

When concatenating properties to create paths, the schema of the knowledge graph
has to be taken into account since not all properties can be freely combined with each
other. We defined an extended |P∗

G | × |P∗
G | property-adjacency matrix M that indicates

whether two properties can be adjacent in a path. Since G is a directed graph, the pair
of properties (pi, pj) are adjacent if the range of the first property, R(pi), fits to the
domain of the second, D(pj). The matrix expresses this as follows:

Mi,j =

{
1, if properties pi and pj can be adjacent
0, otherwise.

(10)

ESTHER implements five different modes to decide whether two properties fit to each
other with respect to their domain and range. They are defined as follows:

Strict equality (S) : Mi,j = 1 ⇔ R′(pi) = D′(pj) (11)
Subsumed (SU) : Mi,j = 1 ⇔ R(pi) ⊇ D(pj) (12)
Non-disjoint (ND) : Mi,j = 1 ⇔ R′(pi) ∩D′(pj) ̸= ∅ (13)
Non-disjoint subsumption (NDS) : Mi,j = 1 ⇔ R(pi) ∩D(pj) ̸= ∅ (14)
Irrelevant (I) : ∀pi, pj ∈P∗

G ,Mi,j = 1 (15)

It can be seen that all modes rely on the range and domain of the properties except the
I mode, which allows the combination of all properties.

Syed at al. [28] exclude paths with a loop in their search, i.e., while exploring the
graph, the search algorithm is not allowed to visit a node twice. However, we aimed

Algorithm 1: ESTHER’s path search algorithm
Input: p, N , k, e(·), PG ,M, G
Output: A set of corroborative paths Πk(p)

1 Πk(p)← {};
2 Q← {};
3 for i = 1 to |PG | do
4 // Add properties with a domain that matches the domain of p according toM
5 if D(pi) = D(p) then
6 // the queue takes two values: a path and its priority (i.e., its distance to p)
7 Q.add({pi},−||e(pi)− e(p)||);
8 end
9 end

10 while (|Q| > 0) && (|Πk(p)| < N) do
11 q⃗ ← Q.poll();
12 if |q⃗| <= k then
13 // If the range of the last property in the path equals p’s range
14 if R(q⃗|q⃗|−1) = R(p) then
15 P.add(path);
16 end
17 end
18 if |q⃗| < k then
19 // Extend this path
20 for i = 1 to |M| do
21 ifMq⃗|q⃗|−1,pi = 1 then
22 Q.add(q⃗ ∪ pi,−||e(q⃗)− e(p)||);
23 end
24 end
25 end
26 end
27 return Πk(p);

to quantify the effect of loops on our approach. Hence, ESTHER can be configured to
allow or disallow loops. If loops are not allowed, the property pi can not be added to q⃗
when extending a path if q⃗ already contain its opposite p−1

i .

4.3 Path Search

ESTHER uses the A* search algorithm to find the N best corroborative path candidates
for a given property p. Let d be a distance measure in the embedding space. The A*
search is configured to search for paths with a length up to k that minimize the distance
to the property embedding. To this end, the A* search should minimize the error ε:

ε (q⃗) = d(e(q⃗), e(p)) + η|q⃗| (16)

where η is a weight that allows to penalize longer paths. Algorithm 1 shows the pseudo
code for the path search. A priority queue is used to sort the incomplete path candidates

according to their error ε. The queue is initialized with all properties that share the
same domain as p. In each step, the best incomplete path from the queue is selected
and combined with new properties based on M. A new corroborative path is found
when the newly added property has the same range as p. The search stops as soon
as N corroborative paths have been found or all possible paths with length k have
been checked. Table 2 shows example corroborative paths that have been identified by
the search algorithm for the predicate nationality in the FB15k-237 dataset (see
Section 5). The paths show that ESTHER will make use of information like (1) the
nationality of other people that married in the place of birth of the subject, (2) the
nationality of siblings of people that were born in places at which the subject lived, and
(3) the countries in which the language of a subject is spoken.

4.4 Path Scoring

The result of the previous step is a set of corroborative paths Πk(p). The second
step scores these paths by measuring their cooccurrence with p within G. Previous
works [28] point out that deriving the necessary path counts is computationally ex-
pensive and provide a heuristic to compute the normalized pointwise mutual informa-
tion for a q-restricted path and p. We reuse the heuristics for ESTHER but make use of
the positive NPMI (PNPMI) for the path scores. Preliminary results showed that most
negative NPMI values (1) were very small and, hence, statistically not reliable, and
(2) reduced the performance of ESTHER. Let P(p) be the probability that a random
triple has the property p as predicate and let P̂ denote approximated probabilities. We
calculate the probability of a q-restricted path, the probability of the cooccurrence of a
q-restricted path and p, and the approximation of the PNPMI as follows:

P̂
(
Πk

(tx,ty),q⃗

)
=

|Πk
(tx,ty),q⃗

|
|λ(tx)| · |λ(ty)|

(17)

P̂
(
Πk

(tx,ty),q⃗
, p
)
=

|{πk(a, b) ∈ Πk
(tx,ty),q⃗

: (a, p, b) ∈ G}|
|λ(tx)| · |λ(ty)|

(18)

P̂NPMI(Πk
(tx,ty),q⃗

, p) = max

log

(
P̂
(
Πk

(tx,ty),q⃗,p
)

P̂
(
Πk

(tx,ty),q⃗

)
P(p)

)
− log

(
P̂
(
Πk

(tx,ty),q⃗
, p
)) , 0

 . (19)

The calculation has to handle outliers which can be caused by the approximation.
To this end, we define the score of the path Πk

(D(p),R(p)),q⃗ dubbed ζp,q⃗ as follows:

ζp,q⃗ = min
(
1, P̂NPMI(Πk

(D(p),R(p)),q⃗, p)
)

(20)

Table 2 shows the scores for the three example paths.

4.5 Veracity calculation

The veracity calculation of a single fact (s, p, o) is done by checking whether the sub-
ject s and object o of the fact are connected by corroborative paths of the previously

Table 2. Example paths for the predicate nationality found in the FB15k-237 dataset.

q-restricted path ε (q⃗) ζp,q⃗

place of birth−−−−−−−−−→ marriage.location of ceremony←−−−−−−−−−−−−−−−−−−−− nationality−−−−−−−−→ 7.87 0.47
people.place lived.location−−−−−−−−−−−−−−−−−−→ place of birth←−−−−−−−−− sibling−−−−−→ nationality−−−−−−−−→ 9.30 0.27
languages−−−−−−→ countries spoken in−−−−−−−−−−−−−→ 10.88 0.07

determined set Πk(p). Let Z be the set of the path scores ζp,q⃗ of all corroborative paths
Πk

(D(p),R(p)),q⃗ ∈ Πk(p) that connect s and o at least once. The final truth score τ is cal-
culated as the cubic mean of the scores in Z.2 In the special case, that no corroborative
paths could be identified for p 0.0 is returned. If corroborative paths have been found
but none of them exists between s and o −1 is returned.

τ =

0.0 if Πk(p) = ∅
-1 if (Πk(p) ̸= ∅) ∧ (Z = ∅)
3

√
1
|Z|
∑

ζp,q⃗∈Z ζ3p,q⃗ else
(21)

It is worth noticing that only the last step of ESTHER relies on the fact to be checked.
In a fact checking scenario, the search for corroborative paths and their scoring can
be done in a pre-processing step. The service that checks the single facts only has to
perform the veracity calculation step. This is different to approaches other approaches
like KL [6], KS [22] and COPAAL [28] that have to perform their search for paths
based on the given fact.

4.6 Complexity Analysis

The complexity of ESTHER can be derived by determining the complexity of (1) the
generation of the property-adjacency matrix, (2) the path finding algorithm and (3) the
calculation of the PNPMI values for the top-N paths for each of the predicates. The
first step is a pairwise comparison of properties and has a time and a space complex-
ity of O(|PG |2). The second step is based on the A* algorithm, which has a time
complexity of O(|PG |k). A single PNPMI value relies on the number of paths, the
number of predicates and the number of pairs which are connected by both. Deriv-
ing the counts for the paths and the pairs that both have in common is the expensive
part which grows linearly with respect to the length of the paths k. This has to be
done for all N top paths for each predicate that ESTHER should support in the fact
checking step. This leads to a time and space complexity of O(kN |PG |). Hence, the
setup of ESTHER for a given knowledge graph has a time and a space complexity of
O(|PG |k + |PG |2 + kN |PG |) = O(|PG |k + kN |PG |). It should be noted that the gener-
ation of the KGE is not part of the complexity as we assume the embedding as given.

2 Preliminary tests showed a good performance for the cubic mean in comparison to the arith-
metic mean and the quadratic mean.

Table 3. Data statistics of FB15k-237 and WN18RR

FB15k-237 WN18RR

Entities 14 541 40 943
Relations 237 11
Triples 289 650 89 869

To check a single fact, the previously identified paths for p are used. In the worst
case N corroborative paths have to be checked. ESTHER checks whether these paths
exist between s and o of the given fact. Hence, this check has a complexity of O(kN).

5 Evaluation

5.1 Datasets

We use the datasets FB15k-237 [29] and WN18RR [8]. These datasets have a size
that permits the computation of embeddings in a reasonable time and, hence, have a
widespread usage in works related to KGE. Table 3 gives statistical information about
the datasets. Both datasets are divided in a training, validation and test split. We generate
embeddings based on the training and validation data and extend the test data to be used
for fact checking. We extend the two knowledge graphs with their respective ontologies
(incl. type information) to ensure that the fact checking approaches can make use of
them.3 A class hierarchy is required to make use of the SU and NDS modes of ESTHER.
For WN18RR, the class hierarchy is present in its ontology. However, since Freebase
does not support a class hierarchy [5], we inferred the hierarchy from the existing data
in FB15k-237. Given two types tx and ty , we consider tx to be a subclass of ty if all
instances of tx are instances of ty , i.e., λ(tx) ⊆ λ(ty).

Each dataset’s test split is a set of true facts. For a fact checking experiment, a
set of false facts is needed. We adopt the approach in [9] and randomly sample 750
triples, which we then corrupt to create false triples. The false triples are generated by
corrupting the subject, the object and both the subject and object, each 1

3 of the time.
Entities are replaced with random entities of the same type as the original entities.4

5.2 Setup

We evaluate ESTHER in three experiments. In all experiments, the effectiveness of each
fact checking approach is measured using the area under ROC (AUC-ROC), the area
under precision recall curve (AUC-PR) and the F1-measure. The latter needs a thresh-
old to separate positive and negative classes. We use a threshold that maximizes each
approach’s F1-measure.

In our first experiment, we evaluate different configurations of ESTHER on both
datasets. Current surveys present over 40 different KGE approaches [11]. We have to

3 The ontology for FB15k-237 is available at https://github.com/
knowledgegraph/schema. The ontology for WN18RR was adapted from

https://github.com/knowledgegraph/schema
https://github.com/knowledgegraph/schema

Table 4. Hyper-parameters used to generate TransE, RotatE and DensE embeddings.

FB15k-237 WN18RR

TransE RotatE DensE TransE RotatE DensE

Dimensions 1000 1000 500 500 500 200
Learning rate 0.00005 0.00005 0.0001 0.00005 0.00005 0.0001
Batch size 1024 256 512 512 128 256
Iterations 100 000 100 000 100 000 80 000 80 000 100 000
Margin 9.0 9.0 9.0 6.0 6.0 12.0
Adversarial temperature 1.0 1.0 1.0 0.5 0.5 0.3
Neg. sample size 256 256 256 1024 512 1024

choose a subset of the available algorithms due to limited resources. We use TransE,
RotatE and DensE because they (1) are compositional embeddings, (2) represent diverse
embedding spaces (real numbers, complex numbers and quaternions) and (3) are well
cited.5The parameters used for the generation of the embeddings are listed in Table 4
and are taken from the respective publications since they were suggested for the two
datasets. Only the batch size was reduced to make the embeddings work on our GPU.
For each KGE, we run ESTHER with all different modes, a varying maximum length of
paths k = [1, 6] and different numbers of top paths N = {10, 20, 50, 100, 200, 500}.
All runs are executed twice—with and without allowing loops in the paths. In all runs,
the penalty for long paths η is set to 1.

In our second experiment, we compare the best performing mode of ESTHER with
10 other approaches that have been used for fact checking, namely: COPAAL [28],
KS [22], Katz [12], Pathent [32], Simrank [10], AdamicAdar [1], Jaccard[15], Degree
product [20], PredPath [21] and PRA [13].6 The first 8 approaches are unsupervised
while PredPath and PRA are supervised. For the supervised approaches, we perform a
10-fold cross validation to get results for all facts. In addition to the effectiveness, we
measure the runtime of the single systems to evaluate their efficiency.7

The third experiments combines each of the compared approaches with ESTHER.
Let A be one of the approaches and let τ(s,p,o),A be the veracity score that it returns
for a given fact (s, p, o). Let τ(s,p,o),E be the veracity score returned by ESTHER for

https://www.w3.org/2006/03/wn/wn20/. The added information is not taken into
account while generating the embeddings.

4 The extended datasets can be found at https://hobbitdata.informatik.
uni-leipzig.de/esther/.

5 We use the implementation for TransE and RotatE of https://github.com/
DeepGraphLearning/KnowledgeGraphEmbedding and the DensE implementation
of https://github.com/anonymous-dense-submission/DensE.

6 For our experiments, we used the source code provided by Shiralkar et al. [22] in the
version of October 31st 2018 (see https://github.com/shiralkarprashant/
knowledgestream). However, The source code of KL [6] and KL-Rel [22] did not work
for us. Hence, a comparison with these approaches was not possible.

7 The runtime experiments were conducted on a system with an Intel®Core™i5-7500 CPU @
3.40GHz, 16 GB RAM and Ubuntu 20.04.2 LTS.

https://www.w3.org/2006/03/wn/wn20/
https://hobbitdata.informatik.uni-leipzig.de/esther/
https://hobbitdata.informatik.uni-leipzig.de/esther/
https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding
https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding
https://github.com/anonymous-dense-submission/DensE
https://github.com/shiralkarprashant/knowledgestream
https://github.com/shiralkarprashant/knowledgestream

Table 5. Configurations of ESTHER that yield the best AUC-ROC values with the different KGEs.
AUC-ROC, AUC-PR and F1-measure are shown as percentages.

KGE Mode Loops k N AUC-ROC AUC-PR F1-measure

FB15k-237 TransE S Y 4 200 82.53 75.79 85.50
RotatE S Y 4 200 83.07 85.54 76.61
DensE S Y 3 200 81.82 84.48 76.60

WNRR18 TransE I Y 3 500 77.55 88.61 71.06
RotatE I Y 5 500 73.15 85.25 66.67
DensE I Y 2 500 71.19 85.45 66.67

the same fact. We collect these values for each fact and use them as input for a meta-
algorithm. As meta-algorithm, we use different classifiers (Random Forest and SVM)
and regression algorithms (REPTree, SMO and REPTree with bagging) which return
a classification or a veracity score, respectively.8 The meta-algorithm is evaluated in a
10-fold cross validation.

5.3 Results

The first experiment gives a large amount of results. Due to the limited space, we focus
on those results that give us a good insight into ESTHER’s performance. The results of
the modes S, SU, ND and NDS are comparable in nearly all configurations. Moreover,
ESTHER achieves better results if loops are allowed. Hence, we only report results for
the modes S and I with loops. Table 5 shows the configurations of ESTHER that achieve
the highest AUC-ROC values for the different KGEs and datasets. The influence of
N and k is visualized in Figure 1. For FB15k-237, the S mode achieves better results
while the I mode yields better results for WN18RR. ESTHER performs better when
using TransE or RotatE embeddings than using DensE embeddings.

The second experiment compares the performance of ESTHER with 10 other fact
checking approaches. The left half of Tables 6 and 7 show the results. It can be seen that
ESTHER performs better than most of the other approaches on both datasets. However,
it is outperformed by KS on FB15k-237 and KS, Pathent and PrePath on WN18RR with
respect to the AUC-ROC. The results of the runtime comparison are in Figure 2.

The third series of experiments evaluates the combinations of ESTHER with each
of the other fact checking approaches. All meta-algorithms led to an increase of the
average performance. Random Forest, SVM, SMO and REPTree led to an average im-
provement of the AUC-ROC of 18.5%, 13.4%, 18.8% and 20.2%. REPTree combined
with Bagging led to the highest average improvement of 20.65%. Because of the limited
space, only the results of this meta-algorithm are reported in detail in the right half of
Tables 6 and 7 for the two datasets, respectively.

8 We use WEKA for all meta-algorithms. https://www.cs.waikato.ac.nz/˜ml/
weka/

https://www.cs.waikato.ac.nz/~ml/weka/
https://www.cs.waikato.ac.nz/~ml/weka/

N = 10 N = 20 N = 50 N = 100 N = 200 N = 500

50

60

70

80
FB

15
k-

23
7,

S
A

U
C

-R
O

C

TransE RotatE DensE

50

60

70

80

FB
15

k-
23

7,
I

A
U

C
-R

O
C

66

68

70

72

74

W
N

18
R

R
,S

A
U

C
-R

O
C

1 2 3 4 5 650

60

70

80

k

W
N

18
R

R
,I

A
U

C
-R

O
C

1 2 3 4 5 6
k

1 2 3 4 5 6
k

Fig. 1. AUC-ROC (in %) results for ESTHER (loops allowed) for both datasets and both modes
on different embedding models and varying values for k and N .

6 Discussion

The experimental results presented in the previous Section led us to several insights.
Figure 1 shows that the S mode is more stable than the I mode with respect to the in-
crease of path lengths. Even with a k that is higher than the optimum, the performance
remains high for TransE and RotatE models and high values of N . ESTHER also shows
a robust behavior with high N values, i.e., the performance might decrease only slightly
if N is increased while k remains the same. It can be concluded that ESTHER’s scoring
and veracity calculation are able to filter noisy paths that have been identified by the
search but are not helpful for the fact checking task. The I mode shows in most con-
figurations a peak. This is a hint that ignoring the domain and range gives the search

Table 6. Performance of other fact checking approaches on FB15k-237 and their performance if
they are combined with ESTHER. The number in brackets shows the performance difference.

Approach
Without ESTHER With ESTHER

AUC-ROC AUC-PR F1-score AUC-ROC AUC-PR F1-score

COPAAL 77.42 70.13 66.67 87.12 (+09.70) 85.53 (+15.40) 81.40 (+14.73)
KS 87.59 83.29 82.75 89.97 (+02.38) 89.08 (+05.79) 83.67 (+00.92)
Katz 82.80 80.43 78.01 86.30 (+03.50) 85.62 (+05.19) 78.98 (+00.97)
Pathent 73.46 63.87 74.68 84.75 (+11.29) 84.72 (+20.85) 77.53 (+02.85)
Simrank 40.07 44.29 66.76 81.60 (+41.53) 82.41 (+38.12) 75.55 (+08.79)
AdamicAdar 72.12 72.57 70.22 85.36 (+13.24) 85.29 (+12.72) 78.16 (+07.94)
Jaccard 38.56 46.04 66.67 82.91 (+44.35) 82.48 (+36.44) 76.24 (+09.57)
Degree product 77.11 76.20 72.87 83.28 (+06.17) 83.54 (+07.34) 78.33 (+05.46)

PredPath 69.87 77.25 68.30 83.76 (+13.89) 84.33 (+07.08) 76.95 (+08.65)
PRA 08.53 36.56 66.67 97.44 (+88.91) 98.09 (+61.53) 93.44 (+26.77)

Table 7. Comparison of other fact checking approaches with and without ESTHER on WN18RR

Approach
Without ESTHER With ESTHER

AUC-ROC AUC-PR F1-score AUC-ROC AUC-PR F1-score

COPAAL 68.11 83.68 66.67 79.38 (+11.27) 86.14 (+02.46) 77.99 (+11.32)
KS 86.44 90.85 82.96 94.92 (+08.48) 96.17 (+05.32) 89.75 (+06.79)
Katz 69.96 73.19 67.97 86.22 (+16.26) 83.19 (+10.00) 79.97 (+12.00)
Pathent 79.98 82.67 75.66 86.94 (+06.96) 90.43 (+07.76) 82.30 (+06.64)
Simrank 44.15 46.09 66.67 82.47 (+38.32) 87.25 (+41.16) 75.77 (+09.10)
AdamicAdar 59.86 64.79 66.67 84.22 (+24.36) 87.78 (+22.99) 76.40 (+09.73)
Jaccard 42.34 47.96 66.67 87.18 (+44.84) 90.26 (+42.30) 80.03 (+13.36)
Degree product 65.57 67.80 66.67 87.43 (+21.86) 90.39 (+22.59) 80.39 (+13.72)

PredPath 80.20 85.95 78.59 82.20 (+02.00) 87.43 (+01.48) 79.43 (+00.84)
PRA 71.80 85.90 66.67 75.35 (+03.55) 82.81 (−03.09) 71.06 (+04.39)

algorithm the ability to find a large amount of paths that are close the given property but
do not exist in practice. These paths can fill the top N in cases with longer k and replace
meaningful paths that have been identified with shorter values for k. Another hint for
this behavior is that the I mode works better on the dataset that contains less properties.
This behavior may lead to problems in practice since it will be hard to identify the cor-
rect configuration for this peak without training data. Another insight is that ESTHER
works more reliable on TransE and RotatE than on DensE models. With respect to the
path length, the results on FB15k-237 show that paths of length 4 can lead to better
results than shorter paths. This might be an interesting result for similar approaches like
COPAAL or KS. The SU, ND and NDS modes have nearly no difference to the S mode.
This is caused by the ontologies of both datasets. The SU and NDS mode would show
an effect if a class is used as the range of one property and has a subclass that is used as
the domain of another property. The ND and NDS mode would show different results

ESTHER(PP)

ESTHER(FC)

ESTHER

COPAAL KS
Katz

Pathent

Simrank

AdamicAdar
Jaccard

Degree product

PredPath PRA
0

5,000

10,000

15,000

1,684

375

2,059

408

9,702

11,227

2,324

4,003

2 2 2

2,400

10,654

99
1,166 1,265

67

3,259

722 690

3,219

1 1 1
660

13,046

R
un

tim
e

in
s FB15k-237

WN18RR

Fig. 2. Runtimes of the different approaches in seconds. For ESTHER, we report the runtime of
the best performing configurations separated into pre-processing (PP), fact checking (FC) and the
complete runtime.

for domain and range definitions that comprise more than a single class. None of the
situations occur in WN18RR. In FB15K-237, the S mode allows 667 property combina-
tions while the SU mode allows 1089. This difference does not seem to have an impact
on the performance and is small compared to the I mode which allows 56169 combina-
tions. The ND and NDS modes do not add any new combinations in comparison to the
S and SU mode, respectively.

The comparison of ESTHER with other approaches shows that it is able to out-
perform most other approaches—including COPAAL which is based on corroborative
paths as well (see Tables 6 and 7). It also shows that KS performs best while Syed et
al. [28] found COPAAL to perform better than KS on a DBpedia-based dataset. This
underlines that FB15k-237 and WN18RR that have been used intensively in the knowl-
edge graph embedding research area might have different features than a DBpedia or
other, larger knowledge graphs. The runtime comparison shows that ESTHER has a bet-
ter efficiency on FB15k-237 than most other approaches including the better performing
KS and PredPath. AdamicAdar, Jaccard and Degree product are faster than ESTHER be-
cause they only compare the direct neighbors of s and o, i.e., they only take paths of
length 2 into account. On WN18RR, the higher k and N values of the best performing
ESTHER configuration lead to a higher runtime than most of the other approaches.

The result of the third experiment clearly show that the solution space explored by
ESTHER is complementary to that explored by solutions based on discrete data. This
claim is supported by the significant increase of performance for all approaches when
they are combined with ESTHER.9 Hence, a combination of approaches that are based
on a discrete representation of a knowledge graph with an approach that relies on a
continuous representation clearly leads to better fact checking results.

7 Conclusion

The goal of this paper was to measure whether the combination of information con-
tained in continuous and discrete representations of knowledge graphs can improve

9 We use a Wilcoxon signed rank test with α = 0.01

state-of-the-art methods for fact checking. We presented ESTHER, the first path-based
fact checking approach that makes use of a continuous graph representation by using
knowledge graph embeddings. Our results suggest that ESTHER is complementary to
existing approaches on the fact checking problem. In particular, ESTHER improves the
performance of all other fact checking approaches if they are combined with ESTHER
using a decision tree. Natural continuations of our work include using ensemble learn-
ing to combine the 11 approaches considered in this paper. Corresponding experiments
will be carried out in future works. In addition, we plan to run ESTHER on larger knowl-
edge graphs with more complex ontologies, e.g., DBpedia. However, this step depends
on the development of scalable knowledge graph embedding algorithms to generate the
compositional embeddings.

Acknowledgements

This work has been supported by the German Federal Ministry of Education and Re-
search (BMBF) within the EuroStars project E!113314 FROCKG under the grant no
01QE19418. This work has been supported by the European Union’s Horizon 2020 re-
search and innovation programme under the Marie Skłodowska-Curie grant agreement
No 860801.

References

1. Adamic, L.A., Adar, E.: Friends and neighbors on the web. Social Networks 25(3) (2003)
2. Athreya, R.G., Ngonga Ngomo, A.C., Usbeck, R.: Enhancing community interactions with

data-driven chatbots–the dbpedia chatbot. In: Companion of the The Web Conference 2018
on The Web Conference 2018. pp. 143–146 (2018)

3. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: Dbpedia: A nucleus
for a web of open data. In: The semantic web, pp. 722–735. Springer (2007)

4. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embed-
dings for modeling multi-relational data. In: Advances in neural information processing sys-
tems. pp. 2787–2795 (2013)

5. Chah, N.: OK google, what is your ontology? or: Exploring freebase classification to under-
stand google’s knowledge graph. CoRR abs/1805.03885 (2018)

6. Ciampaglia, G.L., Shiralkar, P., Rocha, L.M., Bollen, J., Menczer, F., Flammini, A.: Compu-
tational fact checking from knowledge networks. PloS one 10(6), e0128193 (2015)

7. Demir, C., Ngonga Ngomo, A.C.: Convolutional complex knowledge graph embeddings.
Proceedings of the Extended Semantic Web Conference (2020)

8. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2d knowledge graph
embeddings. CoRR abs/1707.01476 (2017)

9. Gerber, D., Esteves, D., Lehmann, J., Bühmann, L., Usbeck, R., Ngonga Ngomo, A.C.,
Speck, R.: DeFacto—temporal and multilingual deep fact validation. Web Semantics: Sci-
ence, Services and Agents on the World Wide Web 35, 85–101 (2015)

10. Jeh, G., Widom, J.: Simrank: A measure of structural-context similarity. In: Proceedings of
the Eighth ACM SIGKDD Intern. Conf. on Knowledge Discovery and Data Mining (2002)

11. Ji, S., Pan, S., Cambria, E., Marttinen, P., Yu, P.S.: A survey on knowledge graphs: Represen-
tation, acquisition, and applications. IEEE Transactions on Neural Networks and Learning
Systems pp. 1–21 (2021)

12. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18 (1953)
13. Lao, N., Cohen, W.W.: Relational retrieval using a combination of path-constrained random

walks. Machine learning 81(1), 53–67 (2010)
14. Li, F., Dong, X.L., Langen, A., Li, Y.: Knowledge verification for long-tail verticals. Proc.

VLDB Endow. 10(11), 1370–1381 (Aug 2017)
15. Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks. In: Pro-

ceedings of the Twelfth Intern. Conf. on Information and Knowledge Management (2003)
16. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for

knowledge graph completion. In: Twenty-ninth AAAI conf. on artificial intelligence (2015)
17. Lu, H., Hu, H.: Dense: An enhanced non-abelian group representation for knowledge graph

embedding (2020)
18. Malyshev, S., Krötzsch, M., González, L., Gonsior, J., Bielefeldt, A.: Getting the most out

of wikidata: Semantic technology usage in wikipedia’s knowledge graph. In: International
Semantic Web Conference. pp. 376–394. Springer (2018)

19. Nickel, M., Tresp, V., Kriegel, H.P.: Factorizing yago: scalable machine learning for linked
data. In: Proceedings of the 21st international conference on World Wide Web (2012)

20. Shi, B., Weninger, T.: Fact checking in large knowledge graphs - A discriminative predicate
path mining approach. CoRR abs/1510.05911 (2015)

21. Shi, B., Weninger, T.: Discriminative predicate path mining for fact checking in knowledge
graphs. Knowledge-based systems 104, 123–133 (2016)

22. Shiralkar, P., Flammini, A., Menczer, F., Ciampaglia, G.L.: Finding streams in knowledge
graphs to support fact checking. In: 2017 IEEE International Conference on Data Mining
(ICDM). pp. 859–864. IEEE (2017)

23. Singhal, A.: Introducing the knowledge graph: things, not strings. Official google
blog (May 2012), https://www.blog.google/products/search/
introducing-knowledge-graph-things-not/

24. Socher, R., Chen, D., Manning, C.D., Ng, A.: Reasoning with neural tensor networks for
knowledge base completion. In: Advances in neural information processing systems (2013)

25. Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: Pathsim: Meta path-based top-k similarity search
in heterogeneous information networks. Proceedings of the VLDB Endowment 4(11) (2011)

26. Sun, Z., Deng, Z., Nie, J., Tang, J.: Rotate: Knowledge graph embedding by relational rota-
tion in complex space. CoRR abs/1902.10197 (2019)

27. Syed, Z.H., Röder, M., Ngonga Ngomo, A.C.: Factcheck: Validating rdf triples using textual
evidence. In: Proceedings of the 27th ACM International Conference on Information and
Knowledge Management. pp. 1599–1602. ACM (2018)

28. Syed, Z.H., Röder, M., Ngonga Ngomo, A.C.: Unsupervised discovery of corroborative paths
for fact validation. In: The Semantic Web – ISWC 2019. pp. 630–646 (2019)

29. Toutanova, K., Chen, D., Pantel, P., Poon, H., Choudhury, P., Gamon, M.: Representing text
for joint embedding of text and knowledge bases. In: Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing. pp. 1499–1509 (Sep 2015)

30. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: A survey of approaches
and applications. IEEE Transactions on Knowledge and Data Engineering 29(12) (2017)

31. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hy-
perplanes. In: Twenty-Eighth AAAI conference on artificial intelligence (2014)

32. Xu, Z., Pu, C., Yang, J.: Link prediction based on path entropy. Physica A: Statistical Me-
chanics and its Applications 456, 294–301 (2016)

33. Zhao, M., Chow, T.W., Zhang, Z., Li, B.: Automatic image annotation via compact graph
based semi-supervised learning. Knowledge-Based Systems 76, 148–165 (2015)

https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/

	Using Compositional Embeddings for Fact Checking

