pandas.IntervalIndex#
- class pandas.IntervalIndex(data, closed=None, dtype=None, copy=False, name=None, verify_integrity=True)[source]#
Immutable index of intervals that are closed on the same side.
- Parameters:
- dataarray-like (1-dimensional)
Array-like (ndarray,
DateTimeArray
,TimeDeltaArray
) containing Interval objects from which to build the IntervalIndex.- closed{‘left’, ‘right’, ‘both’, ‘neither’}, default ‘right’
Whether the intervals are closed on the left-side, right-side, both or neither.
- dtypedtype or None, default None
If None, dtype will be inferred.
- copybool, default False
Copy the input data.
- nameobject, optional
Name to be stored in the index.
- verify_integritybool, default True
Verify that the IntervalIndex is valid.
Attributes
String describing the inclusive side the intervals.
Indicates if an interval is empty, meaning it contains no points.
Return a boolean whether the IntervalArray is non-overlapping and monotonic.
Return True if the IntervalIndex has overlapping intervals, else False.
Return an array representing the data in the Index.
left
right
mid
length
Methods
from_arrays
(left, right[, closed, name, ...])Construct from two arrays defining the left and right bounds.
from_tuples
(data[, closed, name, copy, dtype])Construct an IntervalIndex from an array-like of tuples.
from_breaks
(breaks[, closed, name, copy, dtype])Construct an IntervalIndex from an array of splits.
contains
(*args, **kwargs)Check elementwise if the Intervals contain the value.
overlaps
(*args, **kwargs)Check elementwise if an Interval overlaps the values in the IntervalArray.
set_closed
(*args, **kwargs)Return an identical IntervalArray closed on the specified side.
to_tuples
(*args, **kwargs)Return an ndarray (if self is IntervalArray) or Index (if self is IntervalIndex) of tuples of the form (left, right).
See also
Index
The base pandas Index type.
Interval
A bounded slice-like interval; the elements of an IntervalIndex.
interval_range
Function to create a fixed frequency IntervalIndex.
cut
Bin values into discrete Intervals.
qcut
Bin values into equal-sized Intervals based on rank or sample quantiles.
Notes
See the user guide for more.
Examples
A new
IntervalIndex
is typically constructed usinginterval_range()
:>>> pd.interval_range(start=0, end=5) IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]], dtype='interval[int64, right]')
It may also be constructed using one of the constructor methods:
IntervalIndex.from_arrays()
,IntervalIndex.from_breaks()
, andIntervalIndex.from_tuples()
.See further examples in the doc strings of
interval_range
and the mentioned constructor methods.