
PostMessage Security in 
Chrome Extensions
Arseny Reutov
areutov@ptsecurity.com
https://raz0r.name

OWASP London Chapter



$	whoami

• Web	application	security	researcher	at	
Positive	Technologies

• Member	of	Positive	Hack	Days	
(https://phdays.com)	conference	board

• Occasional	web	security	blogger	
(https://raz0r.name)



Agenda

• Chrome	extensions	&	their	messaging
• PostMessage security	considerations
• Mounting	extensions	analysis
• The	results!
• The	takeaways



CHROME	EXTENSIONS	&	THEIR	
MESSAGING

Part	I



Chrome	extensions	ecosystem

• Chrome	Web	Store	is	notoriously	known	in	
terms	of	security	(unintuitive	permissions	
dialogs,	malware	&	insecure	extensions)



Chrome	extensions	messaging



Extension	manifest	file
{

"name": “My Extension",

"description": “My Super Chrome Extension",

"version": “1.0",

"background": {

"scripts": [“js/background.js"]

},

"content_scripts": [

{

"matches": ["<all_urls>"],

"js": ["js/jquery.js", "js/content.js"]

}

],

"permissions": ["tabs", "http://*/*", "https://*/*"]

}



POSTMESSAGE SECURITY	
CONSIDERATIONS

Part	II



PostMessage API

window.postMessage()	method	enables	cross-
origin	communication

someWindow.postMessage(

"my message", // message data

"*",         // target origin

);



PostMessage API

Developer	is	in	charge	of	origin	validation

window.addEventListener("message", receiveMessage, false);

function receiveMessage(event) {
if (event.origin !== "http://example.org")

return; // checking origin host
if (event.source !== window)

return; // or origin window
process(event.data);

}



PostMessage API

• If	origin	validation	is	absent	or	is	flawed,	an	
attacker’s	message	data	can	reach	dangerous	
pieces	of	code.

• See	“The	pitfalls	of	postMessage”	by	Mathias	
Karlsson for	common	origin	validation	
bypasses.



PostMessage API

• Unlike	other	DOM	events,	message	
propagation	to	listeners	cannot	be	stopped	via	
return false or stopPropagation().

• Extensions’	message	listeners	
are	not	listed	in	Chrome	
Developer	Tools.



PostMessage Attack	Vectors

Method	1:	iframes

var iframe = document.createElement("iframe");

iframe.src = "http://target.com";

iframe.contentWindow.postMessage("some message", "*");

Pros:	stealthy
Cons:	killed	by	X-Frame-Options	and	framebusters



PostMessage Attack	Vectors

Method	2:	opening	a	new	window

var targetWindow = window.open("http://target.com");

targetWindow.onload = function() {

targetWindow.postMessage("some message", "*");

}

Pros:	not	affected	by	X-Frame-Options
Cons:	more	noisy



PostMessage in	Chrome	extensions

• Chrome	extensions	use	postMessage API	to	
receive	messages	from	external	web	sites	(e.g.	
translator	services)	or	within	the	same	origin	
(especially	in	developer	tools	extensions)

• postMessage data	can	be	passed	into	
background	script	context,	and	in	some	cases	
even	reach	OS	via	Native	Messaging	API



MOUNTING	EXTENSIONS	ANALYSIS
Part	III



The	Research	Steps

• Download	extensions	(Web	Development	
category	only)



The	Research	Steps

• Parse	CRX	files	
(https://github.com/vladignatyev/crx-
extractor)

• Convert	to	ZIP
• Unpack



The	Research	Steps

• Parse	Manifest	file,	find	content	scripts
• Parse	each	content	script	with	Acorn	JS	parser	
(https://github.com/ternjs/acorn)

• Look	for	postMessage listeners	with	an	Acorn	
plugin



The	Research	Steps

• Log	each	postMessage listener	found	into	
local	elasticsearch



THE	RESULTS
Part	IV



React	Dev Tools

• Have	got	postMessage protection	just	recently	
by	an	external	PR:



React	Dev Tools

• Prior	to	the	fix	message	was	validated	by	just	
checking	a	special	property	(which	is	user	
controlled):



Ember	Inspector

• No	origin	validation,	but,	luckily,	data	does	not	
reach	sensitive	parts.



AngularJS Batarang (Angular	v1.x)

• Developers	have	no	clue	how	to	validate	
origin



Augury	(Angular	v2.x)

• Again,	origin	validation	is	just	checking	a	
magic	string	



Augury	(Angular	v2.x)

• Augury	employs	interesting	message	
serialization:	



Augury	(Angular	v2.x)

• XSS	on	any	website	with	the	extension	
installed



Augury	(Angular	v2.x)



LanSweeper Shell	Execute



LanSweeper Shell	Execute



LanSweeper Shell	Execute



THE	TAKEAWAYS
Part	V



The	takeaways

• For	users:	
– do	not	install	shady	extensions	from	unknown	
publishers

– check	requested	permissions



The	takeaways

• For	developers:	
– pay	attention	to	origin	validation	in	message	
listeners

– consider	origin	bypass	tricks	
– do	not	rely	on	magic	strings



The	takeaways

• For	browsers:
– should	provide	built-in	origin	validation
– see	getMessage proposal	by	@homakov



Thank	you!


