login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165537
Number of permutations of length n which avoid the patterns 4213 and 2143.
1
1, 2, 6, 22, 88, 366, 1556, 6720, 29396, 129996, 580276, 2611290, 11834116, 53963190, 247414100, 1139860150, 5274189156, 24498929370, 114199276476, 534028437710, 2504543749532, 11777411979050, 55518128412708, 262301674637860, 1241868060613788, 5891050888101112, 27995910970158108
OFFSET
1,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000 (terms 1..100 from David Bevan)
David Bevan, The permutation class Av(4213,2143), arXiv:1510.06328 [math.CO], 2015.
Kremer, Darla and Shiu, Wai Chee, Finite transition matrices for permutations avoiding pairs of length four patterns, Discrete Math. 268 (2003), 171-183. MR1983276 (2004b:05006). See Table 1.
FORMULA
G.f.: ((1-2*z) * (-1 5*z - 7*z^2 2*z^3 (1-z)*sqrt(1 - 6*z 5*z^2))) / (1 - 10*z 24*z^2 - 20*z^3 4*z^4). - David Bevan, Sep 25 2015
Conjecture: n*a(n) 2*(-9*n 7)*a(n-1) (121*n-204)*a(n-2) 28*(-14*n 37)*a(n-3) 16*(42*n-151)*a(n-4) 4*(-153*n 694)*a(n-5) 4*(67*n-364)*a(n-6) 40*(-n 6)*a(n-7) = 0. - R. J. Mathar, Jun 14 2016
a(n) ~ 12 * 5^(n 3/2) / (121 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jul 07 2024
EXAMPLE
There are 22 permutations of length 4 which avoid these two patterns, so a(4)=22.
MATHEMATICA
Rest[CoefficientList[Series[((1-2*x)*(-1 5*x -7*x^2 2*x^3 (1 - x)*Sqrt[1-6*x 5*x^2]))/(1-10*x 24*x^2-20*x^3 4*x^4), {x, 0, 50}], x]] (* G. C. Greubel, Oct 22 2018 *)
PROG
(PARI) z='z O('z^66); Vec( ((1-2*z) * (-1 5*z -7*z^2 2*z^3 (1-z) * sqrt(1 -6*z 5*z^2))) / (1 -10*z 24*z^2 -20*z^3 4*z^4) ) \\ Joerg Arndt, Sep 27 2015
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(((1-2*x)*(-1 5*x -7*x^2 2*x^3 (1 - x)*Sqrt(1-6*x 5*x^2)))/(1-10*x 24*x^2-20*x^3 4*x^4))); // G. C. Greubel, Oct 22 2018
CROSSREFS
Sequence in context: A319028 A165536 A032351 * A165538 A165539 A109033
KEYWORD
nonn
AUTHOR
Vincent Vatter, Sep 21 2009
EXTENSIONS
More terms from David Bevan, Sep 25 2015
STATUS
approved