
Dead Simple Python
Idiomatic Python for the Impatient Programmer

by Jason C. McDonald

Errata updated to print 2

Page Error Correction
Print

corrected

5 Nuitka can be used to transpile Python code C and C++ . . . Nuitka can be used to transpile Python code to C and C++ . . . Print 2

15 On Fedora, RHEL, or CentOS, you can run this:

sudo dnf python3 python3-pip

On Fedora, RHEL, or CentOS, you can run this:

sudo dnf install python3 python3-pip

Print 2

30 If I ran the linter again, I’d only see the other two linter errors: If I ran the linter again, I’d only see the other three linter errors: Print 2

47

foo %= 51 # value is now 42.0 (144.0 % 15)

On Fedora, RHEL, or CentOS, you can run this:

foo %= 51 # value is now 42.0 (144.0 % 51)

Print 2

52 The assignment expression is enclosed in parentheses for readability, although
I technically could have omitted them.

The parentheses in the assignment expression is important, as it controls what
part of the expression is stored as the value of eggs. If I omitted the
parentheses, the value True would be stored instead of an integer.

Print 2

57 First, if you want to wrap an expression in literal curly braces, you must use two curly
braces ({{ }}) for every one you want displayed:

answer = 42

print(f"{{answer}}") # prints "{42}"

print(f"{{{{answer}}}}") # prints "{{42}}"

print(f"{{{{{{answer}}}}}}") # prints "{{{42}}}"

First, if you want to wrap an expression in literal curly braces, you must use two curly
braces ({{ }}) for every one you want displayed, plus an additional pair to enable
substitution.

answer = 42

print(f"{{{answer}}}") # prints "{42}"

print(f"{{{{{answer}}}}}") # prints "{{42}}"

print(f"{{{{{{{answer}}}}}}}") # prints "{{{42}}}"

Print 2

114

Hot: ["Lettuce", "Tomato", "Cheese", "Beef", "Salsa"]

Mild: ["Lettuce", "Tomato", "Cheese", "Beef"]

Default: ["Lettuce", "Tomato", "Cheese", "Beef"]

Hot: ["Lettuce", "Tomato", "Beef", "Salsa"]

Mild: ["Lettuce", "Tomato", "Beef"]

Default: ["Lettuce", "Tomato", "Beef"]

Print 2

149 In this chapter, I’ll cover the essentials of object-oriented programming in Python:
creating classes with attributes, modules, and properties.

In this chapter, I’ll cover the essentials of object-oriented programming in Python:
creating classes with attributes, methods, and properties.

Pending

Page Error Correction
Print

corrected

162 In this case, I assume this is some sort of string, which I run through the static
method _encode() I de�ned earlier and then store in the list self._secrets.

In this case, I assume this is some sort of string, which I run through the class method
encrypt() I de�ned earlier and then store in the list self._secrets.

Print 2

162 You actually don’t need to de�ne a deleter if you have no need for special behavior
when the decorator is deleted. Consider what you want to happen if del is called on
your decorator, such as when you are deleting an associated attribute that the
property controls; if you can’t think of anything, skip writing the deleter.

You actually don’t need to de�ne a deleter if you have no need for special behavior
when the property is deleted. Consider what you want to happen if del is called on
your property, such as when you are deleting an associated attribute that the property
controls; if you can’t think of anything, skip writing the deleter.

Print 2

184 If case exceptions . . . In case exceptions . . . Print 2

224 Insertion Counter is designed speci�cally for counting hashable objects; the object is the key, and
the count is an integer value. Other languages call this type of collection a multiset.
Multisets are not the same as counters, but are sometimes used in place of
them, as a side effect of how multisets work.

Print 2

318 Figure update Print 2

326 path.touch() Creates an empty �le at path. Normally, nothing happens if it
 already exists. If the optional exist_ok= argument is False and the
 �le exists, a FileExistsError is raised.

path.touch() Creates an empty �le at path. If one already exists, it updates
 the access timestamp on �le, but does nothing else. If the
 optional exist_ok= argument is False and the �le exists, a
 FileExistsError is raised.

Print 2

358

 left = int.from_bytes(left, byteorder=byteorder)

 right = int.from_bytes(right, byteorder=byteorder)

 left = int.from_bytes(left, byteorder, signed=False)

 right = int.from_bytes(right, byteorder, signed=False)

Print 2

359

 result = left & right

 return result.to_bytes(size, byteorder, signed=True)

Listing 12-38: bitwise_via_int.py:3

I bind the result of the bitwise operation to result. Finally, I convert result back to a
bytes object, using the size I determined earlier, the byteorder passed to my
function, and signed=True to handle conversion of any possible negative integer
values. I return the resulting bytes-like object.

 result = left & right

 return result.to_bytes(size, byteorder, signed=False)

Listing 12-38: bitwise_via_int.py:3

I bind the result of the bitwise operation to result. Finally, I convert result back to a
bytes object, using the size I determined earlier, and the byteorder passed to my
function. I can safely assume signed=False, as left and right can only ever be
positive integers.

Print 2

Page Error Correction
Print

corrected

450

from functools import singledispatchmethod

from typing import overload

class Element:

 # --snip--

from functools import singledispatchmethod

class Element:

 # --snip--

Print 2

450–
451

In this case, I’ll create two more versions of the function: one that works with a string
argument and another that works with either an integer or a �oating-point
number argument:

 @__eq__.register

 def _(self, other: str):

 return self.symbol == other

 @overload

 def _(self, other: float):

 ...

 @__eq__.register

 def _(self, other: int):

 return self.number == other

The �rst of these methods accepts a string argument. The �rst parameter, the one
being switched on, is annotated with a type hint for the expected type, which is a
string (str) in this �rst case.

The second method here accepts either an integer or a �oat, and it is made
possible with the @typing.overload decorator. When type hinting, you can mark one
or more function headings with @overload, to indicate that they overload an upcoming
function or method with the same name. The Ellipsis (...) is used in place of the suite
of the overloaded method, so it can instead share the suite of the method below it.
The function or method not decorated with @overload must come immediately after
all the overloaded versions thereof.

In this case, I’ll create three more versions of the function: one that works with a
string argument, another that works with a �oating-point number, and a third
with an integer:

 @__eq__.register

 def _(self, other: str):

 return self.symbol == other

 @__eq__.register

 def _(self, other: float):

 return self.number == other

 @__eq__.register

 def _(self, other: int):

 return self.number == other

The �rst of these methods accepts a string argument. The �rst parameter, the one
being switched on, is annotated with a type hint for the expected type, which is a
string (str) in this �rst case. The second method here accepts a float, and the
third an int.

When type hinting, you can ordinarily mark one or more function headings with a
special @typing.overload, to indicate that they overload an upcoming function or
method with the same name. The Ellipsis (...) is used in place of the suite of the
overloaded method, so it can instead share the suite of the method below it. The
function or method not decorated with @overload must come immediately after all the
overloaded versions thereof. I �rst thought to use this here, since the second and
third functions had the same body. Unfortunately, @overload does not work with
other decorators, so I could not use this technique here.

Print 2

Page Error Correction
Print

corrected

453

def __str__(self):

 s = ""

 formula = self.components.copy()

 # Hill system

 if 'C' in formula.keys():

 s += f"C{formula['C']}"

 del formula['C']

 if 1 in formula.keys():

 s += f"H{formula['H']}"

 del formula['H']

def __str__(self):

 s = ""

 formula = self.components.copy()

 # Hill system

 if 'C' in formula.keys():

 s += f"C{formula['C']}"

 del formula['C']

 if 'H' in formula.keys():

 s += f"H{formula['H']}"

 del formula['H']

Print 2

627 It can also be used on a number of Raspberry Pi and Ardunio microcontrollers, as
well as hardware from many other brands.

It can also be used on a number of Raspberry Pi and Arduino microcontrollers, as
well as hardware from many other brands.

Print 2

