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Abstract. Determining the semantic role of sentence constituentkey gask in
determining sentence meanings lying behind a veneer afiviasintactic expres-
sion. We present a model of natural language generation $emmantics using
the FrameNet semantic role and frame ontology. We train thdetusing the
FrameNet corpus and apply it to the task of automatic semanie and frame
identification, producing results competitive with prawsovork (about 70% role
labeling accuracy). Unlike previous models used for thiktaur model does
not assume that the frame of a sentence is known, and is aiderttfy null-
instantiated roles, which commonly occur in our corpus and whose identification
is crucial to natural language interpretation.

1 Introduction

A central goal of natural language processing is domaiepeddent understanding.
A useful step towards that goal is the assignment of semawitis to the (syntactic)
constituents of a sentence. Having semantic roles allowsmnecognize semantic ar-
guments of a situation, even when expressed in differertasyin configurations. For
example the role of amstrument, such as &ammer, can be recognized, regardless of
whether its expression is as the subject of the sentehed&gmmer broke the vase) or
via a prepositional phrase headedvayh. This paper attempts the task of learning to
automatically assign such roles. Identifying such roled @e relationships between
them can in turn serve as support for inference about a segitemeaning, for an-
tecedent resolution, or for other understanding or partiss such as prepositional
phrase attachment or word sense disambiguation.

This paper develops a generative model from which one can iofe labels, given
sentence constituents and a word from that sentence thptadiaator, which takes se-
mantic role arguments. We learn the parameters for this hfimae a body of examples
provided by the FrameNet corpus [1]. The problem and sonmegiés of our approach
are similar to that of [2], but the work differs by use of a geie, not a discrimina-
tive, model, and by assuming less known information for mgkhe role assignment.
A difficulty of this task is that there is limited data availatannotated with semantic
roles, in comparison to syntactic parsing. As an illustratdf this, in the model de-
veloped by [2] the most accurate rules only covered 50% ofitteeen examples. To



overcome the limited amount of training data, we would udiety like to applyboot-
strapping, in which limited labeled data are combined with unlabelathdo produce a
more accurate model than that trained on unlabeled data E3o#]. Generative models
are a natural choice in the case of combining fully and plrtannotated data. First,
we need to test their capabilities on fully annotated datahss it exists. This is the
focus of the current paper.

Our work can be compared and contrasted with much past warfdrmation ex-
traction [5—7], in which the goal is to extract from text werdr phrases that fill a role,
such as “acquiring company” or “vehicle,” and in which thare often multiple roles of
interest. In particular, recent work such as [5] uses Hiddankov Models, including
induction over the structure of the model, for the labelagkt The model we use is sim-
ilar, but while our goal is also to identify which roles ardefid, and identify the words
that fill them, we additionally aim to identify the overarobirelationship that holds
between the roles. We call this relationship theme. Secondly, information extraction
normally uses a small number of very domain specific roleslendur corpus has a
large number of roles, with many types of roles that applpsedomains. The tech-
niques of information extraction may not scale well to langinbers of roles. Also, in
information extraction, the labeling task is somewhat,temantically, to the domain
at hand. These methods also tend to rely on regular stryctuoh as capitalization
or indicator terms drawn from a closed class. Finally, theently annotated semantic
data is primarily at the sentence level, versus entire fextaformation extraction.

The acquisition of selectional preferences, or the tenglehgerbs to prefer argu-
ments of a particular type, is a second closely related &e4.[In this line of research
statistical models are typically trained on parsed se®etadetermine verb-subject or
verb-direct object relationships. Such information can$eful for prepositional phrase
attachment or to help determine the semantic class of aqurglyiunseen word.

In this paper, we show that our generative model for roleliageroduces results
competitive with previous work in this area. In additiony eniodel is flexible enough
to be used for annotating additional data, thus improvirggrttodel and the pool of
data available for other researchers. Second, it has ttentatye of capturing the case
when roles araull instantiated in a particular sentence: they are not overtly expressed
but their presence is understood implicitly in discoursdilé/our model handles these
roles, we leave to future work a full evaluation of this ailiFinally, it can identify
which constituents correspond to role labels of a partiagileen predicator.

2 Background

In this section we discuss the FrameNet Corpus, the prewouson labeling roles by
Gildea and Jurafsky, and the role labeling task in more Hetai

2.1 TheFrameNet Corpus

FrameNet [1] is a large-scale, domain-independent contipnt lexicography project
organized around the motivating principles of lexical satita: that systematic correla-
tions can be found between the meaning components of waidsigally the semantic



roles associated with events, and their combinatorialgnt@gs in syntax. This principle
has been instantiated at various levels of granularityfiemint traditions of linguistic
research; FrameNet researchers work at an intermediaieoiegranularity, termed the
frame. Examples of frames include &r1ON_DIRECTIONAL, CONVERSATION, JUDG-
MENT, and TRANSPORTATION Frames consist of multipllexical units—a items cor-
responding to a sense of a word. Examples for therTMyN_DIRECTIONAL frame are
drop andplummet. Also associated with each frame is a set of semaaltés. Examples
for the MOTION_DIRECTIONAL frame include the moving object, called thelAME;
the ultimate destination, thed@3L; the SOURCE and the RTH.

In addition to frame and role definitions, FrameNet has pcedia large number of
role-annotated sentences; the sentences are drawn pyifnam the British National
Corpus. There are two releases of the corpus, FrameNet Iranaeflet |12 we present
results from both, but have so far focused primarily on threnfer. For each annotated
example sentence, a lexical unit of interest, one whichgatguments, is identified.
We will call this word thepredicator.* The words and phrases which participate in
the predicator’s meaning are labeled with their roles, &edentire sentence is labeled
with the relevant frame. Finally, the corpus also includagactic category information
for each role. We give some examples below, with the frantedisn braces at the
beginning, the predicator in bold, and each relevant cuestt labeled with its role and
phrase type. Note that the last example hasa/BR role that is null instantiated.

{MOTION_DIRECTIONAL} Mortars lob heavy shells high into the sky so that
N wetheyldrop [BF, down] B2 on the target] {5 . .from the sky].

{ARRIVING} He heard the sound of liquid slurping in a metal container as

NP e Farrelllapproached [¥, him] [£..from behind].

{TRANSPORTATION [Notb_ 1 [N . The ore] washoated [B°, down the

) GoAL
river].

Our focus here is on the FrameNet corpus, but another seratiptinnotated cor-
pus is under development, called the Proposition Bank [IBjs corpus, based on
adding semantics to the Penn English Treebank, is projeotsdon be larger than
FrameNet, and involves comprehensive rather than sedeatinotation of a corpus.
However, it does not incorporate the rich frame typology odrfeNet, and only a
somewhat limited role typology; while roles are specified éach verb, there is no
generalization across verbs. Finally, Proposition Babklsonly verbs, leaving nouns
and adjectives for a later stage; FrameNet includes aletiBace we desire rich se-
mantic information in preference to a large corpus, we uaenéiNet annotations as our
source of training data. Our methods, however, would gdizerea Proposition Bank.

3 Also, confusingly known as version 0.75 and version 1.Qyeetvely.

4 What we call thepredicator is called thetarget in the FrameNet theory, and what we are calling
a (semantic) role is called in FrameNet &ame element, while what we call aconstituent or
argument head, [2] call simply thehead. We have found that most people find the FrameNet
terminology rather confusing, and so have adopted altemggrms here.



2.2 Gildea & Jurafsky’sDiscriminative model

Gildea and Jurafsky (2002) (henceforth, G&J) were the firstdply a statistical learn-
ing technique to the FrameNet data. They describe a distaitme model for deter-
mining the most probable role for a constituent given thenfathe predicator and
some other features whose description we defer until lateéheé paper. They evalu-
ate their model on a pre-release version of the FrameNetpluspmhich at that time
contained about 50,000 sentences and 67 frame types. Thd@lnas trained by first
using the parser of Collins [11], and deriving features ftbat parse, the original sen-
tence, and the correct FrameNet annotation of that sent@hedr work differs from
ours in a number of important respects. Firstly, in all theiperiments, they assume
that theframe is already known, as well as the predicator of interest. @/biie could
certainly imagine first determining the frame from the seoée(for example, one could
use the model presented here to do that), their use of amisative approach makes
it less straightforward to do joint inference over the cleai€ frame and semantic roles
for constituents, as one would wish to do, whereas that ig@ralahing to do within
a generative model. Secondly, since their discriminativaleh assigns roles to con-
stituents in the sentence, there is no natural way to hamdirpressed arguments, and
they do not attempt to. But unexpressed arguments are cormmatural languages,
and again are naturally handled in a generative model. Meremost of their work
assigns roles to constituents individually and indepetigdrater in their paper, they
do develop and consider joint inference over all the serantes of a predicator, but
this is more naturally done using the kind of model we preben¢. Finally, although
this remains a promissory note, we believe that a genenaidel will be a better basis
for extension via bootstrapping to unlabeled data.

2.3 TheRolelLabeling Task

With respect to the FrameNet corpus, several factors comgpimake the task of role-
labeling challenging, with respect to the features avélédr making the classification.
These results are likely to hold across other theories artiadelogies for semantic
role determination. The challenges also imply that coms$iimg a hand-built semantic
role identifier would prove a daunting task. First, it is nbways predictable from the
syntactic relationship between two phrases whether ttandsin a semantic relation-
ship. Second, many words that may participate in a role havidavariety of possible
roles in which they may participate. There are also many genales such agIME
andPLACE that can be indicated by almost any word. Third, the intestraicture of a
syntactic constituent is not always a good predictor of tie it receives. The prepo-
sitional phrasen the hole, for example, can be adCATION, as inshe sat in the hole,
or a GoAL of movement, as ighe jumped in the hole. Finally, as mentioned earlier, in
many cases roles are null instantiated, which is widespreathny languages; an En-
glish example is passive sentences with no specified agedtit asthe cake was eaten.
Thus, the only evidence for the presence of such roles iegtrdl.

With respect to the relationships between predicatorsndisa and roles, further
difficulties arise. A leading idea of FrameNet is that thereansiderable variety to the
semantic role types available in a particular event (fomgxle, PERCEPTIONevents



and COMMERCE events have very different participants). Thus, idemtifythe frame
that is relevant for a particular sentence and predicatmong the search for roles.
However, many predicators are ambiguous with respect ioftiaene. Further, not all
lexical units of a particular frame necessarily have theesdistribution of roles. For
exampledrop andplummet have lexical entries in the BITION_DIRECTIONAL frame,
but SOuRCEis rare forplummet, yet quite common fodrop. As a result, for the task of
automatic role assignment a mixture of predicator-speaifit frame-specific statistics
are potentially useful to deal with sparseness of a pagiquiedicator or role.

3 A Generative Model for Sentence-Role Labeling

Our goal is to identify frames and roles, given a natural leagge sentence and predi-
cator. As discussed above, G&J's approach to this problestavdetermine the most
probable role for each constituent of the sentence, giveririme, the predicator and
some other features. However, this does not capture ni#ritiation, or roles that are
not reified in the sentence. In addition, a model should Igealpture the relationships
between frames and roles, determining which constituenatdilely roles for which
predicator. To address these concerns we turn to a gereeratidel to determine the
sequence of role labels for a sentence. In other words, odehuzfines a joint prob-
ability distribution over predicators, frames, roles, amhstituents. While the model
is fully general in its ability to determine these variablesthis paper it is only tested
on its ability to determine roles and frames when gibeth a list of constituents and
a single predicator. The generative model, illustratediguie 1, functions as follows.
First, a predicator$, is chosen, which then generates a frafeThe frame generates
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Fig. 1. Role Tagger

a (linearized) role sequenci; throughR, which in turn generates each constituent of
the sentenceC; throughC,. Note that, conditioned on a particular frame, the model
is just a Hidden Markov Model. The sentence-to-constitumapping is discussed in
more detail in Section 3.1.



The model is complicated slightly by the fact that some sargeconstituents do
not correspond to a labeled semantic role. We handle thesgtite@nts with an idea
from machine translation: that of the null source. A secooahglication is the null
instantiations, which are also captured by a null, but is tase it is the emission
which is a null. Henceforth, null sources will be describgdan UNK (unknown) role
to avoid confusion with null emissions. We will discuss ammple with an unknown
role in Section 3.1, and gave an example of a null emissioreatié 2.1.

The joint probability for a FrameNet example in this model is

P(C,R,F,S =P(S x P(F|S x P(RIF, S x P(CIR, F, S,

whereC is the vector of constituent head,is the role vector that generates them,
is the frame, and is the predicator word. The third and fourth terms of thisatpn
involve sequences. For the role sequence, we usually makarkoMassumption that
each word’s role is dependent only on the previous role irsémience. Thus:

PRIF.9 =[[P(RIR-R-1.F) ~[[P(RIR 1. F)
i i

where theR; are the roles in the sequence. The Markov assumption hasfffeetive
in language modeling and tagging and so seems a good aseurtipbiegin with.
Finally, our basic model assumes that constituent emissiom independent of the
frame and predicator given the sequence of roles, that eatdsien depends only on
the role that generated it, and that constituents are inkp# of each other. Thus:

P(CIF, S R) ~ P(CIR) = [ P(GiIR),
i

whereC; are the elements @ andR; are the corresponding elementd$0fThis can be
compared to a part of speech tagging model where words aepémdient of each other
given the tags, and depend only on the tag in the same po#gitittre sequence. The
independence of the constituents and the frame and predigiaen the roles seems
quite reasonable, given that most roles are frame-speaifitthe whole rationale of
FrameNet is that frames are sufficiently fine-grained thietsréor predicators inside a
single frame behave similarly. Adding further dependenaight be expected to only
exacerbate the problem of sparseness in the data.

3.1 Training the model

The FrameNet corpus contains annotations for all of the inommlaponents described
above. To simplify the model, we chose to represent eachtitaerst by its phrasal
category together with the head word of that constituemcé&ithe FrameNet anno-
tations do not include head word information, we determithedheads using simple
heuristics. This representation and the method of headhfingre familiar from the
statistical parsing literature ([12]). This data then pdes a set of constituents with
correctly annotated roles for a given sentence, where in@v which constituents
correspond to roles and what the appropriate predicator ihbse roles. For example,
for the example below, the training example would $erode; F=TRANSPORTATION
R1=DRIVER; C1=Anne/NP;R,=VEHICLE; Co=donkey/NP;R3=AREA; C3=0on/PP.



{TRANSPORTATION “On 26th May 5% . Anne]rode[F,, . .adonkey] fF_,

on the beach],” the letter said .

Most of the parameters for the model are estimated usingaabtforward max-
imum likelihood estimate based on fully labeled trainingad&mission probabilities
need to be smoothed, due to the sparseness of head wordsgBraining, all words
seen only once are replaced by the phrase type label of thstitt@mt of which they are
a head. This gives a phrasal-class based model, whichlissitseothed with a uniform
phrasal class prior, and the probability of generating ensgords belong to a certain
class is estimated as simply a constant (represe®iagor d|class)) times the proba-
bility of the phrasal class. Therefore, statistics are gagtl both for the probabilities of
roles generating each phrase type plus head combinatidrihare is a backoff model
of roles generating a phrase type, and some unknown wordwtitht type.

In an actual semantic parsing application, it would not beAkmwhich constituents
bear a role of which predicators. We could make use of a stiotaarse in determin-
ing constituents that are candidates for roles. In a first@pmation of this, we used
a parser to determine constituents and their phrase typeég;anbined these with the
FrameNet annotations. For this purpose, we restrictedetuss to training and test-
ing on examples whose annotated predicator is a verb, dimese tare dealt with in a
straightforward manner. The “sentence” level of the modl#his case includes only the
verb phrase whose head is the predicator, and its subjeergndhents. If a constituent
is identified in the parse but not in the FrameNet annotati@label it as an MK role.
Again, this treatment is similar to the case of null emissioma statistical machine
translation model. For this format, the example above walde an additional role
inserted at the beginning, with rolezld and constituent=0n/PP.

3.2 Producing the semantic rolelabels

At inference time, the goal is to produce a sequence of rdlel$a given a sequence
of constituents and a predicator. As just discussed, thesgtituents may be the head/
phrase-type pairs from the FrameNet data, or the head#pityps pairs that are the
result of parsing a sentence in the corpus and extractingetti,ephrase with its subject
and arguments. The role-labeling procedure is dependethisofitame, itself a hidden
variable at labeling time. If the frame were known, we could@y use the HMM
Viterbi algorithm, with the roles as the hidden states aredtinstituent heads and their
phrase type as the emissions. In that case, we would usditranwobabilities from
only the frame of interest. Because we currently add emphgstitnents for the null
instantiated roles whether using parsing information dr aor Viterbi sequence is of
the same length as the input constituent sequence.

For the emission probabilities, there are two options,emparticular role can ap-
pear in multiple frames. One option is to condition the efoisprobabilities also on the
frame. Thatis, the emission probabilities are calculatechfonly those role/constituent
pairs that originally appeared in the given frame. A secqptibo is to calculate emis-
sion probabilities for a role over all frames in the trainidata, since this arguably
would provide more evidence and mitigate sparse data prable some extent. How-
ever, the second option also leads to a potential problesh offwords unseen in the



given frame but seen as emissions of the role in other fralesompare both options
in the results.

If the frame is not known, the more realistic case, then weslsaveral options. We
could just change the model and make the roles a combinatiarale and a frame,
but then the Viterbi sequence might change frames part waugfh, which seems
unsatisfactory, given the intended semantics of the matlelcould marginalize out
the frame variable. In practice, given that most roles argéqudar to individual frames,
doing such a marginalization would probably give resuttielidifferent to our current
results, but this also seems conceptually wrong, sinceaweanting to do inference for
the most likely frame and roles underlying a sentence. Seaswe calculate the most
probable configuration of all the hidden variables. Thisagahized Viterbi algorithm is
a straightforward instance of max-propagation algoritfon8ayesian networks [13].

For this case, this is equivalent to the less efficient opmraif simply finding all
frames withP(F|S) > 0, compute the role sequence probabilities given the tiansi
probabilities for that frame and the emission probabgiteross all frames, and then
choosing the maximum product of the prior probability of freame for the predicator
and the probability returned by the HMM Viterbi algorithm.

4 Experimental Results

To test the above model, we trained it on annotated Framedat chndomly dividing
the data into a training set and an unseen test set. Each wameandomly split so that
70% of its examples were in the training set and 10% were irtdbieset. We report
on three types of accuracy. First, role labeling accuradiiésnumber of constituents
correctly labeled. Since we label all constituents, thikesathe familiar metrics of
recall andprecision equivalent. We micro-average by adding up the number oecorr
labels forall examples and dividing by the number of total labels for adraples, so
this is not an average accuracy per-sentence, though wealbaeghe calculations both
ways, and for these experiments the two figures are quite thosach other. Second, we
report the percent of sentences for which all roles are ctiyrlabeled, or full sentence
accuracy. Finally, frame accuracy is calculated as thegatam of sentences for which
the correct frame was chosen based on the predicator.

For a baseline comparison, we computed the accuracy of ghzerder Markov
model, treating all transition probabilities between sads uniform. We also computed
the accuracy of choosing, for all constituents, the mostraomrole given the predi-
cator, and the accuracy of choosing the most common roledgheframe, where the
most common frame (arg maxP (F|S)) for the known predicator is chosen.

4.1 Results: Annotated Roles

Our first set of experiments trained and tested our model ff@correctly annotated
sentences of the FrameNet corpus, together with constiheads as determined by

a parser. We performed most of our experiments on Framelat Fan some experi-
ments with FrameNet Il as wellThe constituents’ heads were chosen by some simple

5 We regard the FrameNet | results as broadly comparable hdtketof G&J, though the data
sets are not exactly the same, and there are various otlieredi€es (we guess the frame



System Trn RolgTst RolgTrn Full| Tst Full Tst Frame
FirstOrder 86.1% | 79.3% | 75.4%| 65.3%| 97.5%
ZeroOrder - 60.0% - 34.6%| 96.5%
BasePredicatgr39.9% | 39.2% | 10.5%| 10.2%| N/A
BaseFrame | 37.8% | 37.6% | 9.2% | 9.5% N/A

Table 1. FrameNet | Experimental Results. Key: Role=Role labelicguaacy, Full=full sentence
accuracy, Frame=Frame choice accuracy. Trn=TrainingTSét Test Set.

heuristics, but their labels correspond to the Phrase Bipeld from FrameNet. These
tests are similar but not identical to the analysis in Seci@ of G&J.

The first results are on 36,805 training sentences, contaeiotal of 82,169 con-
stituents, and 5299 test sentences containing 11,833itw@mmgs. There are 78 frames,
139 possible role labels, and 1,385 predicators. We obt.ih98 role labeling accu-
racy on the training data, 79.3% on the test data. For futkser accuracy,we obtained
75.4% accuracy on the training data and 65.3% on the test Hially, the correct
frame was chosen for 98.1% of training sentences and 97.58teofest sentences.
Table 1 summarizes these and the remainder of our resulthi®data set. We did
not measure the training accuracy in the zeroth-order ddsese results are roughly
comparable to results of 78.5% on test data for G&J's modelaia with constituents
marked, and they cite a similar result for BasePredicato#®6%. We can at least
conclude that performance is similar.

We also measured the benefit of exploring all sequencesserdy the sequence
for the frame with the highest probability given the pretlicaThe difference is shown
in Table 2, for training accuracy only in the First Order aret@Order case. The dif-
ferences are about two percentage points in most cases.

System Role | Full [Frame
First All 79.39465.3%97.5%
First ArgMax|77.29463.2%494.8%
Zero All 60.0%934.6%96.5%
Zero ArgMax58.8%33.4%94.8%

Table 2. FrameNet | Arg Max versus all Sequences

Our next set of results are on FrameNet Il, where we evaluatgdthe ArgMax
case. Training on 70% and testing on 10% resulted in a corpd8,800 training sen-
tences and 12,990 test sentences. Here there are 282 feé2B8gsossible role labels,
and 4,712 predicators. The performance results on the@égssigown in Table 3, are

whereas they assume it; except in parsing experiments, v¢éhasphrasal category given in
FrameNet, whereas they always use phrasal categoriesedtby a parser, even when using
the constituent extent information given by FrameNet). \Aegtrecently obtained G&J's data,
and hope to provide a more precise comparison in future work.



somewhat weaker than for FrameNet |, but not overly so, demsig the increased
number of roles and frames.

System | Role| Full |Frame
FirstOrder73.9%63.7%488.7%
ZeroOrde[61.3%443.0%89.3%

Table 3. FrameNet Il Experimental Results.

In analysis of the role labeling results, we noticed two mapurces of error. The
first is words unseen in a particular frame but not “rare” aber whole corpus. We
could partially address this with a held-out mass for unseems that is weighted by
the prevalence of rare words of each phrase type. Second; sases are just very
difficult, for example, prepositions commonly heading mtbv@&n one type of role can
induce ambiguity, one example being Instrument/Mannerignity on with-marked
roles. We also have difficulties with roles in frames such #feEntiation, which con-
tains roles for Phenomena, Phenomenonl, and Phenomem@ahwersation, with its
Interlocutors, Interlocutorl, and Interlocutor2 rolebe§e roles are semantically simi-
lar, and we would need a richer syntactic representatioiffeerentiate them.

4.2 Results: All Constituents

In the next set of experiments, we evaluated the systemihtegeith a parser, on the
ability to both determine which constituents corresponddies, and to label those
constituents. To do so, we used our statistical parser fLghtse only the sentences
used in the previous section which have a verbal predicalar.parser was trained on
Brown and about half of the Wall Street Journal. Our genegatiodel was trained as
described above, with the inclusion of\d roles for constituents not corresponding to
a labeled role. At role labeling time, the verb phrases asrdebed by the parser are
presented to the model with (the labeled heads of) theirestilgind arguments, with
the main verb as the predicator. The model now has the opfichansing WK role
labels.

Because of the difficulty in matching parse constituents wikir appropriate role
labels in the annotated data, the size of the data set fa thets is considerably smaller
than that above. We used only the verb phrases correspaiodingwn frames, but with
the UNK roles included. There are are 13,782 training example§8ligst examples,
55 frames, and 980 different predicators. Also, there aieurique roles and 43,937
constituents. On this task, the system obtained 81% ro#ifabaccuracy on the train-
ing set and 70.1% on the test set. Full sentences were coalsigenore difficult to get
right, with 58.1% training accuracy and 39.5% test accurkcgme choice accuracy
was 94.5% on the training data and 93.3% on the test dataeTheslts are summa-
rized in Table 4. The only figure G&J give for full sentencewaecy is 38% for a system
that had to determine both which constituents corresponolés, and what those role



labels should be, which is again roughly comparable to ols%%erformance on the
test set.

System Trn Rolg Tst RolgTrn Full|Tst Full
FirstOrder 81.0% 70.194 58.1% 39.5%
ZeroOrder 78.8% 67.8%4 50.7% 34%
BasePredicatorParse35.4% 33.29%4 1.094 0.7%

Table 4. Parse Model Experimental Results.

4.3 Discussion

Our model and these results can be compared and contrastethage of G&J. Some
of the features used by G&J are similar to those used by ouemBdth models use the
phrase type and head word of each constituent. Both modwigiarate the predicator,
but in different ways. Our model assumes the predicatortieeiexplicitly given or
assumes that each main verb in the sentence is a predicafoture version could
determine the probability that each head word is a predicato

In addition to these features, G&J introduce several otbatufres. First, th&ov-
erning Category determines for noun phrases, whether an S or VP most closety d
inates the phrase. This feature may provide similar inféionato that given by our
Markov chain. Second, theRRath feature follows the parse tree from the predicator to
the constituent, represented as the string of nontermératsuntered. The final two
features missing from our model but present in theirs aretlvérehe main verb phrase
of the sentence is in active or passiace, and thePosition of the constituent, before
or after the predicator. However, these are partially &gty linear order and phrasal
constituent type. On the other hand, they always assumelkdge of the frame, and
because they only labeled the roles of actual sentenceittmms, their model does not
include null instantiated roles, nor is it obvious how toesd it to do so.

Finally, our ultimate use for this model is not just role lkbg, but to estimate pa-
rameters when the training data is only partially obserirethat case, using the max-
imum likelihood estimate is statistically sound, whereasximizing the conditional
likelihood would not be and a generative model is to be preter

5 Conclusion and Future Work

We have described and evaluated a successful generativel foodemantic role la-
beling. Our results to date are encouraging but more rentaihe done. While small
improvements, such as better unknown word handling, canduerto the model, we
also see several larger issues that need to be addressenlrdie dhoundary detection
a more sophisticated model is necessary, since under soowensitances non-verbal
predicators assign roles to syntactically non-local darestts. Also, while it is fairly



straightforward to generalize the current model to the cdseultiple predicators per
sentence, an articulated theory of when constituents ¢artdes from multiple predi-
cators is still under development in FrameNet, and wouldirecfurther articulation in
our theory. Finally, it would also be useful to incorporadeng extra syntactic informa-
tion, such as predicator position, and the presence of auatidn, and to model role-
shuffling operations such as passivization, imperativenfprand extraposition, since
these operations, if not modeled, can obscure linguidficabtivated generalizations
about the linear order of roles.
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