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Abstract. Assessing the performance of peer-to-peer algorithms pogsible
without simulations since testing new algorithms by dejpigythem in an ex-
isting P2P network is prohibitively expensive. HowevenmsoP2P algorithms
are sensitive to the network and traffic models that are usélde simulations.
In order to produce realistic results, we therefore regsimulations that re-
semble real-world P2P networks as closely as possible. \&&ride theQuery-
Cycle Simulatora simulator for file-sharing P2P networks networks. We threk
Query-Cycle Simulator to measurements on existing P2Parksnand discuss
some open issues in simulating these networks.

1 Introduction

Peer-to-peer research has encompassed promising worganittains in a vari-
ety of directions, including distributed protocols to ctrost efficient P2P net-
work topologies, search algorithms for unstructured P2Wvorks, incentives
to combat freeriding on P2P networks, and algorithms tordete reputation
of peers in a network, among others. Due to the decentrafiatare and fast
growth of today’s P2P networks, testing such algorithms iead-world envi-
ronment by simply deploying them on an existing P2P netwadk @llecting
data on their performance is a daunting task. In some casssurements are
easier to carry out due to some easily accessible centrabtentity in the net-
work that manages node joins and departures [14]. Also, sdgogithms may
be tested by deploying them on one or a few controlled nodéseimetwork
(asin [15]). However, for a wide range of P2P-related athams and protocols,
simply deploying and testing them on existing P2P netwas kst possible. For
example, most algorithms require each peer in the netwarkpéement the al-
gorithm. Today’s popular peer-to-peer networks [5] haverd?0,000 nodes.
Performing a software update for each of these nodes in twdest each novel
P2P algorithm is impractical. As another example, secymitytocols require
testing under different threat scenarios such as an attatkeonetwork by a
coordinated group of malicious peers. Testing such prégogould require in-
troducing malicious peers into the network, which is alsb practical. Thus,
P2P algorithms and protocols are tested by simulation, rumelisvork models



that attempt to mimic typical node interconnections, tegffatterns etc. Since
algorithms and protocols are often sensitive to the traffit metwork behavior,
there is a clear need for accurate P2P network models.

Work in this area has been mainly done on the fly to test nogelrsthms.
Because of this, most P2P simulators have used simple mdemi€xample,
[1] assumes entirely random interactions among peers irPanegvork to test
a P2P reputation management protocol. In simulating ailoliseéd search algo-
rithm, [4] simply use a uniformly random location of files atdageneration of
queries by peers.

In this paper, we present the Query-Cycle Simulator, a P2rfiaring net-
work simulator based on the query-cycle model describecatién 2, and dis-
cuss the issues that arise in the accurate modeling of a R2BrkeWe focus
on modeling a file-sharing network such as Gnutella [5].

2 The Query-Cycle M odél

We consider atypical P2P network: Interconnected, fileisbgeers are able to
issue gueries for files, peers can respond to queries, aadtfitebe transferred
between two peers to conclude a search process. When a gussued by
a peer, it is propagated by broadcast with hop-count horthomughout the
network (in the usual Gnutella way), peers which receiveqhery forward it
and check if they are able to respond to it.

We suggest a simulation process that proceeds in queryscyaleach query
cycle, a peei in the network may be actively issuing a query, inactive,vame
down and not responding to queries passing by. Upon issuingegy, a peer
waits for incoming responses, selects a download sourcengimse nodes
that responded and starts downloading the file. The queng éyishes when
all peers who have issued queries download a satisfactsponse. Statistics
may be collected at each peer, such as the number of dowrdoadsploads of
the peer.

3 Peer-Level Properties

The system-level dynamics of a P2P network are highly degendn local,
peer-dependent properties, such as the activity leveleshihring behavior of
each peer. In [8], different convergence behavior andmiffecharacteristic path
lengths are observed in simulating a novel P2P network éagyotonstruction
algorithm under two different models, one assigning badtiwtapacities to
nodes based on a Zipf distribution, the other one based cal-sveld distribu-
tion measured in [13].



Since the system-level dynamics of a P2P network — and héecgystem-
level impact of a P2P algorithm — is dependent on local, @t parame-
ters, it's essential to accurately model these paramafdganay classify these
parameters into two types: content distribution paramset@nd peer behavior
parameters.

Content Distribution. We must accurately model the volume and type of
content each peer carries. P2P networks are far from horsogenn terms
of type and volume of data shared, hence a model reflectingveaéd P2P
networks is required.

Peer Behavior. We must also accurately model peer behavior, including
how a peer submits and responds to queries, how it chooseh whery re-
sponse to download, and its uptime and session duration.

In the next two sections, we discuss how to accurately mdaekcontent
distribution and peer behavior parameters, and we disquss questions and
empirical studies that would be useful to the accurate nioglelf these param-
eters.

4 Content Distribution M odél

The dynamics of a P2P networks are highly dependent on thieneoand variety
of files each peer chooses to share. If few peers choose ®fdbkarthen queries
are likely to be routed via many peers, and the load on thear&treferring to
file uploads is likely to be highly imbalanced. If many peel®ase to each
share a wide variety of files, the network of peers who interait one another
is likely to be dense and unclustered, and query responss tme likely to be
quick.

Accurate assessment of the impact of intelligent queryimgualgorithms
and content-based topologies depends on the accurateingpdéthe volume
and variety each peer shares. Furthermore, accurate mgdslithe content
shared by peers in the network gives us greater insight ngdile-sharing and
communication patterns in the network, which is useful imgnareas of P2P
research.

41 DataVolume

In our model, each peer in the network shares a certain nuailbiges.
Real-world observations. [13] has measured the probability distribution
over the number of files shared by peers in Gnutella.
Model. We use this distribution to assign a number of shared ffiésto
each peef in the network. Currently, we use the absolute values froh [1



4.2 Content Type

In this section, we describe how we model the individual f#ash peer chooses
to share. It is important to accurately model this becausewiil determine
patterns of peers who interact with one other. A model in Whine files peers
share are chosen randomly is insufficient, as it will fail toquce clusters of
peers that interact with on another, as has been observe84ysh properties
affect the performance of many algorithms, including sealgorithms [2] and
reputation algorithms [6].

Real-world observations. In [3], it is observed that peers in a P2P network
are in general interested in a subset of the total availadsieeat on the network.
Furthermore, it is also observed in [3] that peers are ofteareésted only in
files from a few content categories. For example, in the doroieducational
resources [10], users have a certain affinity towards legmmaterials related to
the course of study they undertake.

It also has been observed in [7] that many document storagfersg, in-
cluding the WWW, exhibit Zipf distributions on the populsriof documents.
This reflects the fact that some popular documents are veaiglycopied and
held, while most documents are held by far fewer peers. Time san be said of
content categories: there are some content categorids désudop 40 Hits” in
the music domain”) which are very popular and widely heldjle&vmost other
categories (such as “Acid Jazz”) are less widely held.

Mode. We model the properties described above as follows. Bripégrs
are assumed to be interested in a subset of the total aeaitabitent in the
network, i.e., each peer initially picks a number of contategories and shares
files only in these categories. Furthermore, we assume thatvith different
popularities exist within each content category, govetmed Zipf distribution.
Files are assigned to peers at initialization in the follogvimanner. According
to the probabilistic model described below, each pegassigned some content
categorie”". Then, peet is given an interest level for each content category
c € C'. Finally, peeri is assigned filed” according to its content categories
and interest levels in those categories. In this model, detimct file f., may
be uniquely identified by the content categaryo which it belongs and its
popularity rankingr within that category. The probabilistic model is based on
empirical observations of file distributions in [13] and [7]

Assigning content categoriedle assume content categorieS = {cy,...,c, }.
Some content categories are more popular than others. §hgifiles in some
content categories are more widely held than the files inrath&egories. We
characterize a content category completely by its popwleaink. That is¢; =
1,c0 = 2,.... We model this popularity by a Zipf distribution: when a péser
initialized, it is set to be interested in content category C' with probability
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p(c) given byp(c) = —=+=——. We require a peer to be interested in at l&ast,
=0 1%

content categories, repeating the peer’s interest tesgtdpt,, categories have
been chosen. The s€t is the set of content categories that interest peer
Modeling interest levelA peeri interested in content categori€¥ is prob-
ably not equally interested in all categories C;. Rather, peef is more likely
to be more interested in some categories than others. Wel itiislby assign-
ing an interest value’. to each content category< C; of interest to pee.
This interest value is determined uniformly at random fateeontent category
for each peei. The fraction of files shared by peethat are in category is

w

given byp(cli) = W The number of files shared by peahat are in
C,E T C,

categoryc is given by F = p(cl|i) F*.

Note that the interest value is not correlated with the ganawpularity of
content category. This reflects the fact that, while a certain category mayfbe o
interest to many peers (i.e., Top 40 hits), that categorgtimacessarily the main
interest of those peers. Also note that since we assume dysitste network,
we assume that the interests of peers do not change over time.

Modeling FilesWe now wish to model the individual files held by each
peer. Each distinct file may be uniquely identified by theeupl, r}, wherec
represents the content category to which the file belong$; aepresents its
popularity rank within content category We denote this filef,. .. Within each
content category there are some files that are very popuidrsame that are
held by few people. We model this by a Zipf distribution asIwEhe fraction
of files in content category that are copies of fil¢,. ,. is given by:

S =

p(ferle) = )

A
where F is the number of distinct files in categoty Notice that in order to
evaluatep(f. ,|c), we need to model the number of distinct files in each content
category (see below). The probability that a fflehared by peeris a copy of

file f., is given by the level of interegt(c|i) that peer has in category times

the popularityp( f..r|c) of file f., within categoryc p(f.,|i) = p(c|i)p(fer|c).

At initialization, we assign files to each pedrased on this distribution and the
number of files/! shared by peerin each category. Each peer storesfhe-}
values for the files that it shares.

Modeling the number of distinct files per categolfythere is maximum
replication going on in the network, there are at maximbifhfiles of content
categoryc in the network, wheré"® represents the number of files in categoery
shared by peet, the peer who shares the most files in catego®n the other
hand, if every single file on the network is distinct, therréharep(c) F' distinct

o
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files, whereF' is the total number of files on the network, an@) is the fraction

of files that are in category The truth probably lies somewhere in between, and
we setF, = dF? + (1 — d)p(c)F whered is some number between 0 and 1.
In our implementation, we selt = .25. Empirical evidence would be useful to
determine an accurate choicedf

4.3 More Complex Semantics

The current content model assumes a simple and flat list éénboategories as
basic taxonomy to categorize content in a P2P network. Whigeassumption
may hold for today’s simple P2P file sharing networks, moreaaded P2P
networks will use more sophisticated categorizations oteat. For example,
[3] also uses a concept hierarchy to describe content. Memerglly, ontologies
may be used to mark up content in a P2P network. For exampleg iEdutella
[10] network, peers exchange learning objects describednbglogies. Since
algorithms designed to run on such networks require an ateunodeling of
the network, it will be necessary to adapt the content ¢hstion model used in
the simulations.

For example, if an ontology is used to mark up resources inRarfedwork,
the content distribution model should contain distribnti@ver the popularity
of certain concept combinations and attribute values. &listributions may
be measured in the domain from which the content in the nétigairawn.

5 Peer Behavior M odél

In addition to content distribution, another primary facto the system-wide
dynamics of a P2P network is peer behavior, including peémapand session
duration, peer activity levels, and how peers issue ancresto queries. These
parameters affect the network in many ways. For examplguéetly chang-
ing network participation (i.e., very short session dwradi yet high uptimes
of nodes) increases the administration overhead of togatogstruction proto-
cols, which generally require communication among a nurobpeers to repair
the network topology once a peer has left or joined, an ingpdrtost factor to
consider in the design of such protocols. Second, node eptapresents the
availability of storage space and computational power énrtétwork. The pat-
tern of node uptime in P2P networks is of interest for apfibees that wish
to take advantage of these networks for large-scale coripnuga as in [6]. If
the network consists of a large pool of nodes that partieipatly infrequently
and are down most of the time, those nodes that remain in tindriehave to
sustain a higher work and storage load.



Query activity level is another peer behavior that is of ipatar interest to
P2P research, as the query behavior of peers (in conjungitbrthe network’s
content distribution patterns) determines which peemratt with each other.
These interaction patterns are of importance to the effed@sign of P2P algo-
rithms ranging from search algorithms to file indexing poats.

5.1 Uptimeand Session Duration

Participating nodes frequently leave and re-join a P2P ortvand we define a
peer’'s uptime to be the fraction of an observation period @hpeer is partici-
pating in the P2P network, i.e., issuing, responding to anddrding queries.

Real-world observations. Uptime and session duration of peers have been
set in [13]. Observations on the MojoNation P2P network [idye revealed
that up to 84% enter the network one time, and for less tharhone At the
moment, we do not consider these peers in our simulationsy plobably do
not contribute to the shared data much, and they probablytissue too many
queries.

Modd. We assume a pool d@f peers, and each peer has a certain probability
of being online, assigned based on the uptime distributqf3]. At each query
cycle, it is determined for each peer based on its probghifitbeing up if it
enters the network and stays there for a certain period & tutich is drawn
from the session duration distribution in [13].

5.2 Query Activity

Peers in a P2P network issue queries to search for downligaiiab that match
their interests. A peer’s query activity determines the rat which it issues
queries when it is up.

Real-world observations. So far, we are not aware of measurements on
query rates of peers in a P2P network. An empirical study erdiktribution
of query rates of real-world P2P networks would be stragyitbrd and very
useful to the accurate modeling of the network.

Modd. In our model, nodes generate queries based on a Poissors@roce
The query rate of each node is set upon initialization anddised uniformly

at random from an intervdlrate,,;,,, raten,q. }. In €ach query cycle, equation
p(#queries == x) = eXp;# gives the probability that a node issues x

queries, whera is the node’s'query rate.

5.3 Queries

In the query cycle model, each active peer issues a querychtqeery cycle.
The specific query that peéissues is given by the model described below.



Real-World observations. Peers in general query for files that exist on the
network and are in the content category of their interesg firkt is true in large
and diverse P2P networks, the latter we claim to be true ferntlajority of
queries a peer issues, albeit it is yet to be shown by empstcdies on the
query behavior in P2P networks.

Model. In our model, a query., represents a query for the filg .. We
say that a peer only issues queries in in the content cagsgoriwhich it is
interested. The probability that a peegenerates a quenry., is given by it’s
interest level in categorytimes the popularity of file in c:

p(Qc,rﬁ) = p(C|Z')p(fc7T|c) (2)

(We say here that the popularijtyg. . |c) of a queryg. , is equal to the popularity
p(fer|c) of its corresponding fil¢. ,..) We also suggest that a peer will not issue
a query for a file that it already owns.

5.4 Query Responses

In this framework, modeling query responses is straightéod: If peer: re-
ceives a queryy. », and it owns a copy of the corresponding fflg., it responds
to the peer that has issued the query and offers to uploadéhe fi
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Fig. 1. Share of uploads and files in a P2P network.



55 Downloads

In the query cycle model, a cycle consists of each active igsaing a query,

waiting for the list of incoming responses, and downloadorg of the re-

sponses. In our model, a peer randomly chooses a responsemtodd. This

may not accurately reflect reality. In fact, for a file-shgrisystem such as
Gnutella, users tend to select peers with high bandwidthinigoto being able

to download a file fast. However, the Query-Cycle Simulatr easily be ex-
tended to bias source selection based on peer bandwidth.

6 Network Parameters

Network parameters characterize the underlying transmaviork of a P2P net-
work and the transport network related properties of peers.

6.1 Topology

Peers form an overlay network on top of a transport netwonsoriJjoining
the network, peers establish links to a number of peers iméteork. When
leaving, peers disband these links. Query and control gessare passed along
the interconnection links between peers.

Real-world observations. Freely evolving P2P networks have been shown
to exhibit power-law network characteristics [11]. Henaeavganize peers into
a power-law network. Upon joining the network, peers coht®e node with
probability T d; - whereN is the set of nodes currently in the network and

i J
d; is the nodejedlégree of peerThus, joining nodes have a higher probability of
connecting to nodes which maintain a higher number of nétwonnections,
which yields a network with power-law characteristics [9].

Moded. The topology of a P2P network is in several ways to be consitler
when designing P2P algorithms. First, the pattern of whexe peers usually
join the network can be important for designing topologystaiction protocols.
For example, the fact that P2P networks exhibit a power-lgyology shows
that some peers in the network have a higher probability ofgoeontacted
when a new peer joins the network, challenging topology waogon protocols
with an inherent imbalance. Second, depending on the sestiod deployed
in the network, the topology may determine the scope of a ipeilie network
(Gnutella uses a broadcast search with a hop-count horizomaops). Peers in
the 'center’ of the network, e.g., highly connected peegspower-law network,
will be able to see a larger fraction of the query traffic in tiedwork. Malicious
peers trying to attack the network by responding to queridsdecoy files may




try to locate and to connect to highly connected peers in éeark to increase
their chances of responding to many queries, a threat sododre considered
for reputation algorithms.

6.2 Bandwidth

We currently have a simple understanding of a peer’s barttvimdour simula-

tions: Bandwidth at a peer is consumed only while uploadingawnloading

files. Bandwidth is assigned to a peer upon the creation opéee based on
measurements in [13]. Upon up- or downloading a file, peavayd try to use
their full bandwidth (the actual transfer rate is limited the peer with less
bandwidth). If a peer has several up- and downloads goinghenavailable

bandwidth is split up equally.

7 Discussion and Conclusion

Figure 1 depicts the load share in a sample network of 20 gbatsvas sim-
ulated based on the considerations above. One graph shewsittiber of up-
loads at a particular peer versus the total number of uploette system after
300 query cycles, the other graph shows the number of filagdhay a peer
versus the total number of files shared by all peers. Althdbgtdistribution of
files is highly imbalanced — a property observed real-wogé Retworks [13]
— all peers participate in responding to queries, since peers with only a few
files have a fair likelihood of responding to queries for vpopular files. This
is a property that can also be observed on real-world P2Fonletvand provides
a first indication that our model is somewhat accurate.

We have described first ideas and approaches for a P2P nesivouka-
tor. The efficiency of algorithms can only be compared if ticey be run on
commonly accepted problem sets or simulated on widely aedapodels, an
insight accepted in many other research domains such anéhtesearch [12].
We believe the same to be true for P2P algorithms, and weviealiés impor-
tant for the community to engage in a discussion of P2P mwgléti order to
develop some standards by which to simulate P2P networks.
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