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Abstract

This paper proposes a new architecture for tex-
tual inference in which finding a good alignment
is separated from evaluating entailment. Current
approaches to semantic inference in question an-
swering and textual entailment have approximated
the entailment problem as that of computing the
best alignment of the hypothesis to the text, us-
ing a locally decomposable matching score. While
this formulation is adequate for representing lo-
cal (word-level) phenomena such as synonymy,
it is incapable of representing global interactions,
such as that between verb negation and the addi-
tion/removal of qualifiers, which are often critical
for determining entailment. We propose a pipelined
approach where alignment is followed by a clas-
sification step, in which we extract features repre-
senting high-level characteristics of the entailment
problem, and give the resulting feature vector to a
statistical classifier trained on development data.

1 Introduction

In the area of textual inference, nearly all efforts
have sought to extract the maximum mileage from
quite limited semantic representations, as full and
open-domain natural language understanding lies far
beyond current capabilities. Some have used mea-
sures of semantic overlap (Jijkoun and de Rijke,
2005), but the more interesting work has converged
on a graph-alignment approach, operating on seman-
tic graphs derived from syntactic dependency parses,
and using a locally-decomposable alignment score
as a proxy for strength of entailment (Haghighi et
al., 2005; Salvo Braz et al., 2005). We highlight
here the fundamental semantic limitations of this ap-
proach, and advocate a multi-stage architecture that
addresses these issues. The three key limitations of
the graph matching formulation are an assumption of
monotonicity, an assumption of locality, and a con-
founding of alignment and evaluation of entailment.

Assumption of monotonicity. Most previous al-
gorithms assume upward monotonicity: If a good
match is found with a part of the text, other parts are
assumed not to affect its validity. But many entail-
ment decisions are non-monotonic. Consider vari-
ants on ID 156 in table 1. Suppose the hypothesis
were Oil prices soar. This would allow a perfect
graph match, because the hypothesis is a subgraph
of the text. However, this would be incorrect be-
cause it ignores the modal operator could. Consider
also the alternate text Energy analysts do not confirm
oil prices could soar [. . . ].1

Assumption of locality. Locality is needed to al-
low practical search, but many entailment decisions
rely on global features of the alignment, and thus do
not naturally factor by nodes and edges. To take just
one example, dropping a restrictive modifier pre-
serves entailment in a positive context, but not in a
negative one: Dogs barked loudly |= Dogs barked,
but No dogs barked loudly 6|= No dogs barked.

Confounding alignment and entailment determi-
nation. In a graph-matching system, since we are
embedded in a search for the lowest cost align-
ment, the system, rather than recognizing a non-
entailment, will choose an alternate alignment. In
ID 35, a graph-matching system will get a non-
entailment by making the matching cost very high
between the UN Security Council and the “threat”.
The likely result of that is that the object of the hy-
pothesis will align with the UN Security Council at
the end of the text, assuming that we allow the align-
ment to “break” arcs.2 The lexical alignments are

1This is the same problem labeled and addressed as context
in Tatu and Moldovan (2005).

2Robust systems need to allow matches with imperfect arc
correspondence. For instance, given Bill went to Lyons to study



ID Text Hypothesis Entailed
5* Scientists have discovered that drinking tea protects against heart

disease by improving the function of the artery walls.
Tea protects from some diseases. yes

35 [. . . ] Ahmadinejad attacked the “threat” to bring the issue of Iran’s
nuclear activity to the UN Security Council by the US, France,
Britain and Germany.

Ahmadinejad attacked the UN Secu-
rity Council.

no

156 Energy analysts said oil prices could soar as high as $80 a barrel and
drivers in the U.S. could soon be paying $3 a gallon for gasoline, if
damage reports from oil companies bear bad news.

Oil prices surged. no

256 Brian Brohm, the Louisville quarterback, threw for 368 yards and
five touchdowns as the Cardinals beat visiting Oregon State 63-27.

The quarterback threw for 413 yards
and three touchdowns, and then ran
to the end zone two more times.

no

484 Sir Ian Blair, the Metropolitan Police Commissioner, said, last
night, that his officers were ”playing out of their socks”, but admit-
ted that they were ”racing against time” to track down the bombers.

Sir Ian Blair works for the Metropli-
tan Police.

yes

532 In all, Zerich bought $422 million worth of oil from Iraq, according
to the Volcker committee.

Zerich bought oil from Iraq during
the embargo.

no

646* Tokyo’s High Court has rejected an appeal for compensation by
10 Chinese survivors of Japanese germ warfare experiments during
World War II.

Tokyo’s High Court approves an ap-
peal for compensation by 10 Chi-
nese survivors.

no

Table 1: Illustrative examples from the Pascal RTE2 data set (IDs* come from the test set).

then perfect, and the only imperfect alignment is the
object arc of attacked. A robust inference guesser
will still likely conclude that there is entailment.

We propose that all three problems can be re-
solved in a multi-stage architecture, where the align-
ment phase is followed by a separate phase of entail-
ment determination. Compared to previous work,
we emphasize structural alignment, and seek to ig-
nore issues like polarity and quantity, which can be
left to a subsequent entailment decision: the scoring
function is designed to encourage antonym matches,
and ignore the negation of verb predicates. Given a
good alignment, the determination of entailment re-
duces to a simple classification decision. The clas-
sifier can use hand-set weights, or it can be trained
to minimize a relevant loss function using standard
techniques from machine learning. The classifier is
built over features designed to pattern valid and in-
valid inference. Because we already have a com-
plete alignment, the classifier’s decision can be con-
ditioned on arbitrary global features of the aligned
graphs, and it can detect failures of monotonicity.

2 System

Our system has three stages: linguistic analysis,
alignment, and entailment determination.

French farming practices, we would like to be able to conclude
that Bill studied French farming despite the small structural mis-
match.

2.1 Linguistic analysis

Our goal in this stage is to compute linguistic rep-
resentations of the text and hypothesis that contain
as much information as possible about their seman-
tic content. We use typed dependency graphs, which
contain a node for each word and labeled edges rep-
resenting the grammatical relations between words.

Our approach is to parse the input sentences, and
to convert the ouput to a typed dependency graph,
using a set of deterministic hand-coded rules defin-
ing patterns over the phrase structure tree (Marneffe
et al., 2006). We use the Stanford parser (Klein and
Manning, 2003), a statistical syntactic parser trained
on the Penn TreeBank. To ensure correct parsing,
we preprocess the sentences to collapse named en-
tities (identified by a CRF-based NER system) and
collocations (derived from multiword expressions in
WordNet (Fellbaum, 1998)) into new tokens. The
nodes in the final dependency graph are annotated
with their associated word, part-of-speech (given by
the parser), lemma (given by a finite-state transducer
described by Minnen et al. (2001)) and named-entity
tag (given by the NER tagger).

2.2 Alignment

The purpose in the second stage is to find a good par-
tial alignment between the graphs representing the
hypothesis and the text. An alignment consists of a
mapping from each node in the hypothesis graph to



a single node in the text graph, or to null.3

We define a measure of alignment quality, and a
procedure for identifying high scoring alignments.
We choose a locally decomposable scoring function,
such that the score of an alignment is the sum of the
local node and edge alignment scores. We use an in-
cremental beam search, combined with a node order-
ing heuristic, to do approximate global search in the
large space of possible alignments. We have exper-
imented with several alternative search techniques,
and found that the solution quality is not very sensi-
tive to the specific search procedure used.

Our scoring measure is designed to favor align-
ments which align semantically similar subgraphs,
irrespective of polarity. For this reason, nodes re-
ceive high alignment scores when the words they
represent are semantically similar. Synonyms and
antonyms receive the highest score, and unrelated
words receive the lowest. Our hand-crafted scor-
ing metric takes into account the word, the lemma,
and the part of speech, and searches for word relat-
edness using a range of external resources, includ-
ing WordNet, precomputed latent semantic analysis
matrices, and special-purpose gazettes. Alignment
scores also incorporate local edge scores, which are
based on the shape of the paths between nodes in
the text graph which correspond to adjacent nodes
in the hypothesis graph. Preserved edges receive the
highest score, and longer paths receive lower scores.

2.3 Entailment determination

In the final stage of processing, we make a deci-
sion about whether or not the hypothesis is entailed
by the text, conditioned on the typed dependency
graphs, as well as the best alignment between them.
Because we have a data set of examples that are la-
beled for entailment, we can use techniques from su-
pervised machine learning to learn a statistical clas-
sifier. The class probabilities given by the classifier
can be used to give confidence estimates for com-
puting the average precision.

We use a logistic regression classifier with a
Gaussian prior for regularization. The relatively
small size of the training set can lead to overfitting

3The limitations of using one-to-one alignments are miti-
gated by the fact that many multiword expressions (e.g. named
entities, noun compounds, multiword prepositions) have been
collapsed into single nodes during linguistic analysis.

problems. We address this by keeping the feature
dimensionality small, and using high regularization
penalties in training. As well as setting weights
based on development data, we also have hand-set
weights guided by linguistic intuition. A notable
fact about our Pascal system is that using hand-set
weights does not perform much worse than auto-
matic weight setting. This is partly because the num-
ber of weights is modest, but also reflects that many
of our parameters are for special purpose features
that are sparsely exemplified in the development
data, and which can easily receive completely wrong
values (i.e., positive rather than negative weight)
when fit to the limited development data.

3 Feature representation

In the last stage, the entailment problem is reduced
to a representation as a vector of 54 features. These
features try to capture salient patterns of entailment
and non-entailment, with particular attention to con-
texts which reverse or block monotonicity, such as
negations and quantifiers.

Polarity features. These features capture the pres-
ence (or absence) of linguistic markers of negative
polarity contexts in both the text and the hypothesis,
such as simple negation (not), downward-monotone
quantifiers (no, few), restricting prepositions (with-
out, except) and superlatives (tallest).

Antonymy features. Entailment problems might
involve antonymy, as in ID 646. We check whether
an aligned pair of text/hypothesis words appear to
be antonymous by consulting a pre-computed list
of about 40,000 antonymous and other contrasting
pairs derived from WordNet. For each antonymous
pair, we generate one of 3 boolean features, indicat-
ing whether the words appear in contexts of match-
ing polarity, only the text word is in a negative-
polarity context, or only the hypothesis word does.

Adjunct features. These indicate the dropping or
adding of syntactic adjuncts when moving from the
text to the hypothesis. In ID 532, the hypothesis
aligns well with the text, but the addition of during
the embargo indicates non-entailment. We identify
the root node of the hypothesis graph and the aligned
node in the text graph. Using dependency informa-
tion, we verify whether adjuncts have been added or



dropped. We then determine the polarity of the roots
(negative/positive context, or restrictor of a universal
quantifier) to generate features accordingly.

Modality features. These capture simple patterns
of modal reasoning, as in ID 156, which illustrates
the heuristic that possibility does not entail actuality.
According to the occurrence (or not) of predefined
modality markers, such as must or maybe, we map
the text and the hypothesis to one of six modalities:
possible, not possible, actual, not actual, necessary,
and not necessary. The text/hypothesis modality
pair is then mapped into one of the following entail-
ment judgments: yes, weak yes, don’t know, weak
no, or no. For example:

(not possible |= not actual)? ⇒ yes

(possible |= necessary)? ⇒ weak no

Factivity features. The context in which a verb
phrase is embedded may carry semantic presuppo-
sitions giving rise to (non-)entailments such as The
gangster tried to escape 6|= The gangster escaped.
Negation influences some patterns of entailment:
The gangster managed to escape |= The gangster
escaped while The gangster didn’t manage to es-
cape 6|= The gangster escaped. To capture these phe-
nomena, we compiled small lists of factive, implica-
tive and non-factive verbs, clustered according to the
kinds of entailments they create. We determine to
which class the parent of the text aligned with the
hypothesis root belongs to. If the parent is not in the
list, we only check whether the embedding text is an
affirmative context or a negative one. This allows us
to get right an example such as ID 5, even if the verb
discover was negated.

Quantifier features. These features are designed
to capture entailment relations among simple sen-
tences involving quantification, such as Every com-
pany must report |= A company must report (or
The company, or IBM). No attempt is made to han-
dle multiple quantifiers or scope ambiguities. Each
quantifier found in an alignment is mapped into one
of five categories: no, some, many, most, and all.
The some category includes definite and indefinite
determiners and small cardinal numbers. An order-
ing over the categories is defined. Features are gen-
erated given the categories of both hypothesis and
text.

Algorithm Dev Set Test Set Test Set*
Acc AvP Acc AvP Acc AvP

Hand-set 67.00 72.50 57.63 61.31 58.25 61.36
Learning 66.87 74.83 60.50 58.00 60.50 58.44

Table 2: Accuracy and average precision on the RTE2 data sets.

Number, date, and time features. These are de-
signed to recognize (mis-)matches between num-
bers, dates, and times, as in ID 256. We do some nor-
malization of date expressions and represent num-
bers as ranges and expressions and have a limited
ability to do expression matching. In ID 256, the
mismatched numbers are correctly identified (for
413 yards vs. 368, three touchdowns vs. five).

Structure features. These features aim to deter-
mine that the syntactic structures of the text and hy-
pothesis do not match, as in ID 35 were the objects
of the verb attacked are distinct. Some other fea-
tures deal with specific structures of the hypothesis:
X works for Y, X is located in Y. For such hypothe-
ses, we search the text for noun complements of the
aligned subject which are cues of entailment: in ID
484, the Metropolitan Police Commissioner is iden-
tified as an apposition to Sir Ian Blair.

Alignment features. Our feature representation
includes three real-valued features intended to rep-
resent the quality of the alignment: score is the
raw score returned from the alignment phase, while
goodscore and badscore try to capture whether the
alignment score is “good” or “bad” by computing
the sigmoid function of the distance between the
alignment score and hard-coded “good” and “bad”
reference values.

Conjunction features. We also use conjunctions
of features, namely structure and adjunct features
are used in conjunction with the alignment features.

4 Experiments and results

Table 2 shows results for our system under both
ways of setting the feature weights. “Hand-set” de-
scribes experiments with weights set by hand (but
the threshold set to give balanced true/false answers
on the test set). “Learning” describes experiments in
which feature weights, including the threshold, are
trained by a logistic regression classifier on devel-



Hand-tuned Learning
Task Acc AvP Acc AvP

IE 51.50 52.62 52.50 50.46
IR 53.50 58.77 61.00 60.37
QA 56.00 59.87 58.50 53.21

SUM 69.50 77.03 70.00 76.27

Table 3: Accuracy and average precision split by task on RTE2
test set.

opment data: we used the RTE1 dev1 set (only) and
the RTE2 devset. Training on more data should in
principle be good, but our impression was that the
style of pairs in the RTE2 set was rather different
(a lot more focused on checking an individual at-
tribute or relation, such as X wrote Y). We hoped
that adding in a little RTE1 data would help, but
feared that adding in too much would be counter-
productive. In retrospect this was the right decision.
If we had included all the RTE1 development and
test data, our accuracy with learned weights would
have been 1% lower, and the average precision 3%
lower. An apparent negative to the RTE2 develop-
ment set is that there are a lot of groups of pairs
on one topic (e.g., the 7 pairs on the date when
Cyprus was divided). We suspect that this lack of
independence between examples in the development
set hinders effective machine learning of parameter
weights. Table 4 shows the values learned for se-
lected feature weights. As expected, the features
date insert, structure clear mismatch indicate lack of
entailment while structure match, date match, modal
yes favor entailment. Surprisingly, date modifier in-
sert also indicates entailment.

A bug in the handling of circular dependency
graphs crashed the final version of our system on the
test set, and we reverted to a version from a week
earlier for the results we submitted. The last column
of table 2 shows results for the final system with that
bug fixed.

Our scores are considerably higher on the devel-
opment set. For the machine learned weights, this
reflects classic overfitting: the software jiggles the
weights to get as many training items right as possi-
ble over a sparse feature representation. But the sys-
tem with hand-set weights also does much better on
the development set. This is not classic overfitting
but rather issues of coverage and correctness. Where
the matching patterns of existing features mishan-

Feature class & condition weight
Structure specific struct. match 3.19
Conjunction match & root poorly aligned 2.33
Date date match 1.98
Alignment good score 1.52
Modal yes 0.84
Polarity text & hyp same neg polarity 0.76
. . . . . . . . .
Polarity text has neg marker –0.45
Modal no –0.58
Adjunct different polarity –1.16
Alignment bad score –1.22
Quantifier mismatch –3.12
Structure clear mismatch –3.21
Date date insert –3.43

Table 4: Learned weights for selected features. Positive weights
favor entailment. Weights near 0 are omitted. Based on training
on the RTE1 dev1 set and RTE2 devset.

Features excluded Accuracy
none 67.75
Alignment score features 63.88
Structure 64.12
Modal / Number 67.38
Quantifier 67.62
Polarity 67.75
Adjunct / Antonymy / Factivity 67.88

Table 5: Ablation studies on RTE2 dev set (hand-set weights).

dled examples in the development set or where there
were errors in quantity expression processing etc.,
to the extent that time was available, we tried to
address these issues, boosting the development set
performance. While some of these changes hope-
fully helped test set performance too, other issues
inevitably arose in the test set.

Unlike last year, we did not use per-task optimiza-
tion, feeling that exploitation of it is rather unreal-
istic with respect to developing robust, cross-task
systems. Post-hoc testing shows that use of a task
feature would have boosted the average precision by
over 2%, but would not have improved accuracy.

Post hoc ablation studies on the RTE2 dev set re-
flect the usefulness of the features (see table 5). For
this data, alignment and structure features are very
helpful, but more advanced semantic features (po-
larity, adjunct, antonym and factivity features) seem
to have no or negative effect on performance.

5 Error analysis

This section provides error analysis on the RTE2 test
set. IDs given as examples are incorrectly classified.



Lexical knowledge. A lot of examples require
lexical knowledge that is beyond what is currently
present in our system. We give here only a few
examples of items requiring such lexical knowl-
edge that could be easily modeled into rules (e.g.,
X bought Y |= Y belongs to X):
75 T: Three days after PeopleSoft bought JD Edwards in

June 2003, [. . . ]
H: JD Edwards belongs to PeopleSoft.

218 T: “The C. & the S.” is the brainchild of Dave McCool.
H: Dave McCool is the inventor of “The C. & the S.”.

379 T: David McCool took the money and decided to start
Muzzy Lane in 2002.

H: David McCool is the founder of Muzzy Lane.
250 T: Walter R. Mears, a columnist for The Associated

Press [. . . ]
H: Walter R. Mears writes for The Associated Press.

However some examples require too much inferen-
tial reasoning to be correctly handled:
477 T: President Bush said Miers is the most qualified can-

didate for the job, and Mrs. Bush agreed: “Abso-
lutely. Absolutely.”

H: Mrs. Bush supports Miers.

Alignment. Entailment determination relies on
the alignment. We end up with a reliable alignment
in most cases, except when numbers are involved.
We then often align wrong numbers with respect to
the structure of the sentence.
198 T: Some 420 people have been hanged in Singapore

since 1991, [. . . ]. That gives the country of 4.4 mil-
lion people the highest execution rate in the world
relative to population.

H: 4.4 million people were executed in Singapore.
247 T: [. . . ] in the assassination of the six Jesuits and their

two maids, which took place at daybreak on the 16th
of November, as reported by president Alfredo Cris-
tiani on the 7th of January.

H: The assassination of the six Jesuits and their two
maids took place on the 7th of January.

Numbers. In the handling of numbers, we lack
computation. Numbers in italics in the following ex-
amples are aligned, and we report a mismatch.
10 T: This is good news for Gaelic translators, as the EU

will have to churn out official documents in this lan-
guage, in addition to the 20 other official EU lan-
guages.

H: There are 21 official EU languages.
389 T: In Rwanda there were on average 8,000 victims per

day for about 100 days.
H: There were 800,000 victims of the massacres in

Rwanda.

Structure. Structure features failed to capture
some structure (mis-)matches:

15 T: A mercenary group [. . . ] wounded and killed an in-
terior ministry worker and wounded five others.

H: An interior ministry worker was killed by a merce-
nary group.

65 T: Nguyen’s lawyer, Lex Lasry, told [. . . ]
H: Nguyen is a lawyer.

Specific hypothesis features lead to incorrect clas-
sifications. Compare ID 87 (Salvadoran politician
Hector Colindres was kidnapped |= Hector
Colindres comes from El Salvador) with ID 331:
331 T: A group of elders visited him after his brother, Viet-

nam veteran Dan Shermock, died in July 2004, Sher-
mock said.

H: Dan Shermock comes from Vietnam.

Expansion of word lists. Many features rely on
hand-made lists of words. The expansion of these
lists, namely the list of non-factive verbs (IDs 134,
575) as well as the list of roots for specific hypothe-
ses (IDs 16, 291), would allow use to correctly clas-
sify the following examples:
134 T: Opposition leaders in India have called on foreign

minister Natwar Singh to resign [. . . ]
H: Natwar Singh resigned.

575 T: Microsoft denies that it holds a monopoly.
H: Microsoft holds a monopoly power.

16 T: The British ambassador to Egypt, Derek Plumbly,
[. . . ]

H: Derek Plumbly resides in Egypt.
291 T: Japan’s Kyodo news agency said [. . . ]

H: The Kyodo news agency is based in Japan.
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