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Abstract

This paper introduces a novel Information Extraction problem, where only parts of documents have relevance and linguistic annotations
are available only for these segments. The data is hierarchical: the top layer marks the relevant text segments and the bottom layer
annotates domain-specific entity mentions, but only in the segments marked as relevant in the top layer. We investigate this problem in
the legal domain, where we extract the text corresponding to litigation claims and entity mentions such as patents and laws in each claim.
Because entity mentions are not labeled outside claims in training data, a top-down approach that extracts claims first and entity mentions
next seems the most natural. However, we show that other models are superior. Using a simple semi-supervised approach we implement
a bottom-up Conditional Random Field model; we also implement a joint hierarchical CRF using a combination of pseudo-likelihood
and Gibbs sampling. We show that both these models significantly outperform the top-down approach.

1. Introduction

Most state-of-the-art supervised Information Extraction
(IE) approaches can be classified in two classes: flat extrac-
tors, which segment text into relevant regions, e.g., named
entity mentions (Sang and Meulder, 2003) or elements of
seminar announcements (Freitag, 1998), or deep extractors,
which construct complex domain-specific semantic repre-
sentations of content, e.g., the scenarios proposed by the
Message Understanding Conference (MUC)' or the events
and relations promoted by the Automatic Content Extrac-
tion (ACE) evaluations?. While the latter class of ap-
proaches are closer to true natural language understanding,
such systems have not yet achieved commercial acceptance
due to their relatively poor performance.

In this paper we argue that representations of intermediate
complexity are more attractive for practical applications.
Motivated by a real-world IE domain, we propose a novel
IE task composed of two subtasks or layers: in the first layer
we extract text segments relevant to the given domain and
in the second layer we extract important entities® from these
segments. Figure 1 shows a hypothetical example with such
annotations. An important observation is that, for practi-
cality, we implement a hierarchical annotation process, i.e.,
entities are annotated only inside regions of interest. This
essentially yields an asymmetric task: while the top layer
is fully annotated, the bottom layer has only partial anno-
tations, i.e., many entities outside relevant regions are left
unlabeled.

There are many domains where such a framework is use-
ful. For example, somebody interested in the 2008 Olympic
Games may want to extract only the relevant passages and
corresponding entities from articles about Beijing, e.g.,
players, venues, dates, etc. Technology-savvy blog readers
may be interested only in blog passages related to technol-
ogy and entities such as gadget names and prices. In this

lhttp://www.itl.nist.gov/iaui/894.O2/related7
projects/muc/proceedings/muc_7_toc.html

2http://www.itl.nist.gov/iad/mig//tests/ace/
3Throughout the paper we will use “entities” to stand for “en-
tity mentions”, for brevity.
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Figure 1: An example of text with hierarchical annotations.
Individual words are circles, relevant text regions are rect-
angles, and the embedded entity mentions are rectangles
with rounded corners. Entity mentions also occur outside
of regions of interest and are represented here with dashed
lines, i.e., they are unlabeled.

paper, we focus on a third domain: Intellectual Property
(IP) litigation, where we extract the text corresponding to
litigation claims from pleading documents and the relevant
entities inside each claim, e.g., patents and laws (see Fig-
ure 2 for an example). This task is motivated by several im-
mediate applications: case summarization, semi-structured
search inside claim texts, structured search over claim en-
tities, visualization of the inter-party relations, e.g., who
infringes whose patent.

The contribution of this paper are two fold:

e We introduce a novel IE task motivated by a real-world
application. We evaluate the constructed systems on a
legal domain using data from actual case documents.
The data is noisy: it comes from PDF documents
converted automatically to text or from scanned doc-
uments converted to text using an Optical Character
Recognition (OCR) system.

e Although the hierarchical nature of the task seems
to impose a top-down approach, we show that other
less intuitive models are preferable. Using a sim-
ple semi-supervised approach that addresses the miss-
ing labels in the entity layer we implement a bottom-
up Conditional Random Field (CRF) (Lafferty et al.,
2001) model. We also implement a joint hierarchical
CRF model that extracts the two layers jointly using
a combination of pseudo-likelihood and Gibbs sam-
pling. We show that both these models outperform the
top-down approach significantly.

The paper is organized as follows. Section 2 describes the
IE task with a focus on the legal domain. Section 3 in-
troduces the proposed models. Section 4 shows the results



31. On February 20, 2007, the USPTO duly and legally issued United States Pa\tent No. 7,179,046 B2 ("the *046 patent”), also entitled
”Fan array fan section in air-handling
8

systems.” Huntair is the owner by assignment of all right, title and interest in and to the 046 patent. A copy of the 046 patent is attached
to the Complaint as Exhibit A.

{CraimBegin[FIRST COUNTERCLAIM|ciaimiumber [INFRINGEMENT]c1aiurype OF [U.S. PATENT NO. 7,137,775 B2Jpaten: 32.
Huntair repeats and realleges paragraphs 26-31 as though fully set forth\ herein.

33. Upon information and belief, Plaintiff [is and continues to be directly infringing,

contributorily infringing, and/or inducing infringement|ciaintype Of the [*775 patent]patent by, among other things, making, using,
offering to sell, selling and/or

importing, without authority or license from

Plaintiff, fan arrays in this district and elsewhere in the United States, which embody, incorporate, or otherwise practice one or more
claims of the [*775 patent]patent-

34. Upon information and belief, in its bid to obtain a contract to install an array of\

fans at facilities owned by Amcol in Chicago, Illi

nois, Plaintiff offered to utilize a fan system

that contains, embodies, and employs the invention described and claimed in the [*775 patent]patent.

35. Plaintiff’s conduct constitutes infringement, as provided by [35 U.S.C. $ 271]ray, of

one or more claims of the [*775 patent|patent.

36. As aresult of this infringement, Huntair has been damaged and deprived of the

gains and profits to which it is entitled. Furthermore, Huntair will continue to be damaged unless

this Court enjoins Plaintiff’s infringing conduct,®**"4}

{CraimBegin[SECOND COUNTERCLAIM]ciaimvumver [INFRINGEMENT c1aintype [OF U.S. PATENT NO. 7,179,046 B2Jpaten: 37.
Huntair repeats and realleges paragraphs 26-31 as though fully set forth herein.

Figure 2: A representative example of an annotated pleading document from an IP litigation case. Claim boundaries are
marked with {¢taimBegin gp( ClainEnd} Claim entities are in bold face and delimited by squared parentheses, €.g., [...|patent -

Party names are not annotated because they are available in the case meta data.

of our empirical evaluation. Section 5 summarizes related
work and Section 6 concludes the paper.

2. Problem Description

We start this section with a description of the IP litigation
domain, as a concrete instance of the proposed IE task. Fig-
ure 2 shows an example annotated document from this do-
main. Other than adding the annotation labels and using
bold face for entity mentions we preserved the format of
the original document. The figure illustrates several of the
issues that plague this data: incorrect pagination, e.g., new
paragraphs created in the middle of sentences, missing or
extraneous characters, e.g., “Pa\tent”, broken words, e.g.,
“Illi nois”, etc.

The domain has two layers of annotations. In the top
layer we annotate the claim text regions, shown between
{ClaimBegin 5 ClaimEndl i the figure. The claim segments
contain all the text that is vital to understand the claim
(e.g., who infringes which patent) but no extraneous ma-
terial (e.g., background information about the parties in-
volved in the case or the relief sought). Ideally, these are
separated sections in a pleading document, but in practice,
it is common that this information be mixed. This makes
the processing of pleading documents a non-trivial process,
and is further motivation for an automated extraction sys-
tem. The bottom layer annotates important entities inside
claims:

Patent (P) — contains references to patent numbers, such
as “United States Patent No. 6,190,044 or “ ’044 patent”.

Law (L) — marks references to both federal and state laws,
including sections and sub-sections, e.g., “35 U.S.C. $ 281,
283, 284, and 285" or “California 7 Business & Profes-
sions Code $ 17200, et seq.”. Here the $ sign is a typical
error of our pre-processing system, which often fails to rec-
ognize the section mark symbol (§).

ClaimNumber (N) — annotates the numbered header that
usually marks the beginning of the claim, e.g., “First cause
of action”, “Second claim for relief”. These headers
uniquely identify a claim, but they are often missing.
ClaimType (T) — identifies the type of the parent claim.
It is typically instantiated by verbal phrases or verb nom-
inalizations (see figure). These are obviously not entity
mentions; they are more reminiscent of ACE event anchors.
However, for brevity, we will refer to all these four segment
types as “entities” throughout the paper.

From this domain definition we drew several important ob-
servations that drove the design of our IE models. First,
because the relevant text segments (e.g., claims) are likely
to cover several sentences or paragraphs, the extractors in
the top layer must model the text at a granularity larger than
individual words. As a proof of concept we ran a state-of-
the-art Conditional Random Field (CRF) sequential tagger
trained at word level for the task of extracting the claim
regions. The performance was very low: approximately 5
Fq points.4 Based on this observation, we design our ex-
tractors for the top layer to use sentences as the atomic ele-
ments. Second, although entities can occur both inside and

“We detail our evaluation metrics in Section 4.



outside relevant text regions, during training entity tags are
only available for sentences that are tagged as belonging
to a segment of interest (e.g., claim). This was done be-
cause typically the entities of interest in the given domain
are the ones mentioned inside relevant text regions (e.g., we
are only interested in the infringed patents) and focusing on
this content saves significant annotation effort>. This indi-
cates that the most natural approach for this task follows
a top-down architecture: first extract claim segments, and
then extract the relevant entities from these claims. And
finally, entities occur outside relevant text regions as well
and it is reasonable to assume that they occur in stylisti-
cally similar text (after all, it is written by the same person)
and some of the context is shared (Figure 2 shows that some
of the claim patents are mentioned outside as well). Hence
there is potential benefit in modeling the entities outside
claims as well. This motivates our semi-supervised model
introduced in the next section.

3. Models

In the following subsections, we will describe several archi-
tectures that model this problem, starting with the simplest
first. All the architectures use Conditional Random Fields
(Lafferty et al., 2001) as a fundamental building block. We
model both layers using first-order CRF taggers, using the
Begin (B) — Inside (I) — Outside (O) notation to mark rel-
evant segments in both layers, i.e., B’ is assigned to el-
ements (sentences or words, depending on the layer) that
begin a relevant segment, 'I” is assigned to other elements
inside the segment, and *O’ labels elements outside any rel-
evant snippet.

In the top layer, the claim tag for each sentence s is repre-
sented by a discrete random variable Cj, and it takes values
from the set {B,I,0}. We also denote the sequence of
claim tags in a given document d by the vector C,. In the
entity layer, E; € {{B,I} x {N,T,P,L}} U {O} repre-
sents the entity tag for the word at i*" position in a sen-
tence. In other words, each word can be in the beginning
(‘B’) or inside(‘T’) of one of the four entity types or just be a
non-entity (captured by the ‘O’ tag). We also represent the
sequence of entity tags in a given sentence s by E,. X de-
notes the entire document text while X represents the text
in sentence s, and X; represents the it" word in that sen-
tence. We will use lower case letters to denote the values
assumed by random variables (e.g.: ¢, e, and «x for a claim,
an entity sequence and a textual token respectively). In ad-
dition, we use bold faced notation to represent sequences
and regular faces to represent singleton tokens (e.g.: C for
claim tag sequence and C for a singleton claim tag). We
will omit subscripts where it is clear from the context.

3.1. Top-Down CRF

The top-down CRF is a simple architecture that closely
mirrors the annotation process. In this approach, we train
two independent CRFs which we call Claim CRF and En-
tity CRF. The Claim CRF operates on the whole document

5 A latent assumption is that most of the text is outside claims.
This is why there are significant savings in not marking entities
outside claims.

and considers each sentence as the smallest unit. It mod-
els the probability of claim tags sequence C, for the docu-
ment d conditioned only on text X; = x4, represented as
P (Cd ‘Xd).

The Entity CRF operates at the sentence level and consid-
ers each word as its smallest unit. For each sentence s, the
Entity CRF models P(E;|xs, cs), the probability of its en-
tity tag sequence E, conditioned on the sentence text x, as
well as the corresponding claim tag Cs; = ¢s. The Entity
CREF trains only from data inside claims because there is no
labeled data available for entities outside claims.

At inference time, we first run the Viterbi algorithm for in-
ference on the Claim CRF to generate the predicted claim

sequence cff ) for the whole document d. Then, we run in-
ference for Entity CRF on each sentence s labeled as ’B’ or
‘I’ by the Claim CRF, conditioned on the text x4, to output
its predicted entity tag sequence egp ),

The top-down model can be visualized from Figure 3,
which displays a generic representation of all models dis-
cussed in this paper. The broken arrows from claims to
entities in the figure correspond to this model and represent
flow of information from claims to entities.

The probabilities modeled by the Claim CRF and the Entity
CREF, and the inference order are summarized in row 1 of
Table 1.

3.2. Bottom-up CRF

In the previous approach, the Claim CRF is ignorant of the
underlying entities in the next layer. It is conceivable that
the performance of the top layer Claim CRF could be im-
proved by transmitting to it the entity information in each
sentence, e.g., it is more probable to see references to patent
numbers or statutes inside claim texts.

As a natural first approach, we use a bottom-up architecture
as follows: for each sentence s, the Entity CRF models the
probability of the entity sequence E; conditioned only on
the observed text sequence x;, given by P(E;|x;). The
Claim CREF, on the other hand, models for each document
d, P(Cg4|x4,€4), the probability of the claim sequence Cy
conditioned on the entire observed document text x,; and
the entity tag sequence of the entire document e.

At inference time, we first run inference on the entity se-

quence using the Entity CRF to produce predicted entity

tag sequence eff ) and then run inference on the Claim

CRF conditioned on these entity tags, to generate the pre-

dicted claim tag sequence cl(ip ). Asa post-processing step,
we remove the entity tags e?) that are outside the claims

to output the final entity tags egconstralnts). This addi-

tional cleaning up process for entities is necessitated in the
bottom-up approach to satisfy the problem constraints that
entities occur only inside claims.® The exact models for
claims and entities for this architecture, and the inference
order are displayed in row 2 of Tablel.

This model will result in inferior performance owing to the
missing entity labels outside claims. To elaborate, since
the Entity CRF in this bottom-up architecture is oblivious

SRecall that in the top-down approach, the Entity CRF was
conditioned on the claim tags, so it would learn to label entities
only inside claims.
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Figure 3: Generic graphical representation of all the models discussed in this paper: the top nodes represent the claim layer,
the middle layer represents the entity layer and the bottom layer is text. Each node in the entity layer corresponds to a
word, while each node in the claim layer corresponds to a sentence. The text nodes are darkly shaded because they are
observed. The broken entity nodes in the third sentence, labeled in the top layer as outside claim (’O’), indicate that, outside
claim mentions, entities are unlabeled at training time and ignored at test time. The edges correspond to the dependencies
captured by the model (we removed some non-essential edges to prevent clutter). There are three types of edges between
claims and entities: (a) the broken arrows from claims to entities represent the top-down pipelined system, (b) the broken
arrows from entities to claims represent the two bottom-up pipelined systems and (c) the solid undirected edges represent

the joint hierarchical model.

Table 1:

to the claim information, at inference time, it is free to as-
sign entity tags e(®) in any sentence irrespective of its claim
tag. Furthermore, since the Claim CRF is conditioned on
labeled entities at training time, and since there are no la-
beled entities outside claims in training data, it learns that
sentences that contain entities are very likely to be claims.
Hence, performing inference on the Claim CRF condition-
ing on e(®) may result in a large number of false positives
for claims. In the next subsection, we will present a modi-
fied bottom-up architecture that will address the problem of
missing labeled data in the entity layer.

3.3. Semi-supervised Bottom-up CRF

The bottom-up approach is problematic because the hier-
archical nature of labeling generates partial entity labels
in the annotated data, which may inject an unreasonable
bias in the Claim CRF. If entity labels were available out-
side claims, the Claim CRF conditioned on entities would
learn the true correlation between the presence of entities
and claim segments. Hence, in this approach, we first train
the Entity CRF only on sentences labeled as claims, and run
it on the entire training set to generate predicted labels e(?).
We augment the labeled entities e from inside claims with
e(?) outside the claims to generate our semi-supervised la-

beled entity sequence e((i eml). We use this data to condi-
tion the Claim CRF at training time.

Thus, the only difference between the semi-supervised
bottom-up approach and the bottom-up approach is that the
Claim CRF trains on semi-supervised entity labels e(Semi)
instead of only gold entity labels e as shown in row 3 of Ta-
ble 1. Both these models are represented in Figure 3 by the

broken arrows pointing upwards, symbolizing the pipelined

Architecture Claim Model Entity Model(s) Order of Inference
1 | Top-down P(Cqlxq) P(Es|xs,¢s) c® — e®
2 | Bottom-up P(Cyleq,xq) P(Es|xs) e® _, o _, g(constraints)
3 | Semi-sup. Bottom-up P(Cyle, (seml) Xq) (BEs|xs) e® _, o _, e(ConStraints)
4 | Semi-sup. Joint Hierarchical | P(C |el(isem1)7 X4) (Es|xs), P (Egsem1)|X37 o) | e® @ o(constraints)

Various architectures and their corresponding models.

information flow from entities to claims.

Since this model uses entities both inside and outside
claims, it can be expected to capture the true correlation be-
tween entities and claims better than the standard bottom-
up approach. An additional boost in performance may be
expected also because the Claim CREF, training on predicted
entities, can learn additional contextual and stylistic fea-
tures of entities from outside the claims. Note that the stan-
dard bottom-up CRF presented above did not have this ad-
vantage.

3.4. Semi-supervised Joint Hierarchical CRF

The pipelined approaches discussed thus far model only
one-way flow of information from one layer to the other.
It is reasonable to assume that there is potential benefit in
modeling both the layers jointly: the Entity CRF could rec-
ognize the relevant entities better, knowing whether it is
inside or outside a claim, while the Claim CRF could tag
the claims better, knowing what type of entities are more
likely to occur inside claims than outside.

The new model therefore estimates the joint probability of
both C, and E,, conditioned on the observed document
text sequence x4. The graphical representation of this new
model is shown in Figure 3 as solid undirected edges be-
tween claims and entities. The model is hierarchical by def-
inition because the top layer of claims is at sentence level
while the bottom layer is at word token level.

Although this model is more attractive than the pipelined
models, exact learning is practically infeasible . Hence, in

"The complexity of inference is O((|L1| x |Lz2|)*n), where
L, is the label set for the top layer and Lo is the label set for the
bottom layer and n is the length of the sequence.



this paper, we use a variant of pseudo-likelihood for train-
ing (Besag, 1975). Pseudo-likelihood is known to be a con-
sistent estimator of true likelihood and is known to work
well in cases where local features are strong (Parise and
Welling, 2005; Toutanova et al., 2003). In this method, the
joint likelihood of all the variables in a model is approx-
imated by the product of the probability of each variable,
conditioned on all other variables. In our model we ap-
ply the pseudo-likelihood only between the two layers as
shown below:

P(C,E|x) ~ P(C|E,x)P(E|C,x) (1

This approximation makes learning efficient because each
conditional probability in the right hand side of Eqn. 1 re-
duces to two conditional CRFs: P(C|E,x) is the Claim
CREF conditioned on entities while P(E|C, x) is the Entity
CREF conditioned on claims, both of which can be estimated
using exact methods for CRFs.

Similar to the semi-supervised bottom-up approach, we
train the Claim CRF P(C|E,x) conditioned on semi-
supervised entity labels e(5MD as shown in row 4 of Ta-
ble 1. The symmetric nature of the joint model leaves us
no choice but to train the Entity CRF also on elsemi) o
shown in the same row of Table 1. We also list an uncondi-
tioned Entity CRF P(E|x) as an additional model used in
this architecture because it is required to generate e(SeMi)
at training and e(?) at testing time.

Since exact inference is computationally expensive as well,
we use Gibbs sampling (Andrieu et al., 2003) to perform
approximate inference, since it has many interesting paral-
lels with pseudo-likelihood. Like pseudo-likelihood, Gibbs
sampling deals with local probability of each variable, con-
ditioned on all other variables.® In this approach, we sam-
ple each variable in turn from its probability conditioned on
its latest assignments of its neighbors. This iterative pro-
cess, when run long enough is guaranteed to converge to
the true posterior.

In our case, since we have a two tier hierarchy, in each iter-
ation, we successively sample all the variables in one layer
then move to the other layer. Also, since we need best vari-
able assignments rather than true posterior, we use simu-
lated annealing with Gibbs sampling, using a linear cooling
schedule, as proposed in (Finkel et al., 2005).

4. Experimental Results

We start this section by describing the experimental set-
tings, we continue with a description of the feature set used
in both subtasks, and we conclude with a discussion of the
experimental results.

4.1. Data

The corpus used in this paper contains 90 pleading docu-
ments from actual IP litigation cases. The documents are
either PDF documents converted to text (for newer cases)
or scanned documents converted to text using an OCR sys-
tem (for older cases). A significant amount of noise was

8This reduces to a logistic regression model of probability of
each variable given its neighbors, in case of undirected exponen-
tial models such as ours.

introduced in the data by this process. The corpus was pre-
processed using an in-house tokenizer and sentence bound-
ary detector. The sentence boundary was adapted to the
pagination of this corpus, e.g., it introduces sentence breaks
at two consecutive new line characters even if no punctu-
ation mark exists. The resulting tokenized text was part-
of-speech (POS) tagged using the Stanford POS tagger®.
Lastly, the corpus was annotated by an IP litigation ex-
pert, who followed strict annotation guidelines designed by
a multi-disciplinary group of experts from both Law and
Computer Science. Table 2 summarizes the corpus statis-
tics.

This corpus was randomly split into a training partition
(70%) and a testing partition (30%). We were careful not
to have documents from the same case in both training and
testing.!® This yielded a training corpus of 64 documents
and a testing set of 26 documents.

4.2. Evaluation Metrics

As evaluation metrics we used the standard precision, re-
call, and F; scores coupled with a strict-match criterion
in the spirit of the CoNLL evaluations (Sang and Meulder,
2003). In other words, an extracted segment is considered
correct if it matches exactly the tokens in the corresponding
annotation and it has the correct label.

4.3. Features

For Entity CRF we used a modified version of the Stan-
ford Named Entity Recognition (NER) software!! (Finkel
et al., 2005). We used its default feature set consisting of:
(a) word, (b) part of speech (POS) tag, and (c) word-shape,
where the word shape captures the case of the alpha charac-
ters in the word, collapses sequences of the same type, but
maintains punctuation. These features are extracted from
the current word and its immediate context, i.e., the previ-
ous and following word. We extended this feature set with
only one new feature: the claim tag of the current sentence
¢ (for the top-down and joint approaches).

For Claim CRF, we used three feature groups: (a) sentence
words, (b) number of new-line characters preceding the
sentence (as an approximation of pagination), and (c) the
entity tags in the sentence e, (for the bottom-up and joint
approaches). These features are extracted from the current
sentence, the previous two and the following two sentences.
Note that we did not tune any of these features in any man-
ner.

4.4. Results and Discussion

Table 3 lists the overall results of the proposed architectures
and of three oracle systems. Each oracle system trains only
one layer and uses gold information in the other layer dur-
ing both training and inference, e.g., the claim oracle is a
bottom-up system that has access to gold entity labels. The
difference between the two entity oracles is that one is fully
supervised whereas the other one is semi-supervised, i.e.,

9http://nlp.stanford.edu/software/tagger.shtml

"%The 90 documents came from only 49 cases, so this was an
important constraint.
]lhttp://nlp.stanford.edu/software/CRF—NER.shtml



Documents ‘ Sentences ‘ Words ‘ Claims ‘ ClaimNumbers ‘ ClaimTypes ‘ Patents ‘ Laws

90 | 25250 | 548402 | 362 | 319 | 579 | 1292 | 433
Table 2: Corpus statistics.
Claims Entities

Precision | Recall F1 Precision | Recall F1
Top-down 80.00 54.05 | 64.52 86.42 52.63 | 6542
Bottom-up 60.65 50.81 | 55.29* 48.1 60.47 | 53.58"
Semi-supervised Bottom-up 89.74 56.76 | 69.54" 85.34 56.65 | 68.09*
Semi-supervised Joint Hierarchical 88.89 56.22 | 68.87* 86.16 55.69 | 67.65"

Claim Oracle 92.40 85.41 88.76 - - -
Entity Oracle - - - 83.62 6299 | 71.85
Semi-supervised Entity Oracle - - - 85.25 61.77 | 71.64

Table 3: Overall scores of the proposed architectures and of several oracle models. Asterisks indicate that the difference
between the corresponding score and the score of the top-down model is statistically significant. The results for the semi-
supervised bottom-up and joint models are not significantly different. All significance tests are performed using two-tailed
paired t-test at 95% confidence interval on 20 samples obtained using bootstrap resampling.

the latter trains on E(S¢M)  We draw several observations
from these results:

(a) The performance of the top-down model is reasonable,
considering the difficulty of the task and the size and qual-
ity of the data. We attribute these results mainly to our hi-
erarchical approach, where each layer models the text at
different granularity (sentences or words).

(b) As expected, the first bottom-up approach performs
quite badly. This is caused by the skewed entity distribution
caused by the partial labeling of the training data, which
confuses the claim classifier at inference time.

(c) The semi-supervised bottom-up system addresses this
issue successfully. This is our best performing system. This
proves that information propagated from the bottom layer
improves the top layer significantly. Consequently, the en-
tity layer improves as well, because E(CONSIraints) j o ep_
tities after deleting instances outside claim boundaries) are
based on the predictions of the top layer.

(d) The joint model outperforms the top-down model sig-
nificantly, but it does not perform better than the semi-
supervised bottom-up approach. There are two poten-
tial causes for this behavior: first, the feedback from the
claim model, which has low recall, may end up hurt-
ing the performance of the entity layer when computing

P(Egseml) |xs,¢s); second, because the joint inference
must use parallel labels between the two layers, the entity
layer self trains on predicted entity labels for data outside of
claims, and this may introduce more noise than signal. We
can actually quantify the impact of these problems using the
two entity oracles. The only difference between the two or-
acles is that the semi-supervised oracle self-trains its entity

model: P(Egseml)|xs, ¢cs) versus P(Eg|xs,cs). The ora-
cle results indicate that self-training causes a performance
drop of .2 F; points. Hence, the other .2 F; points in the dif-
ference between the bottom-up and joint models are caused
by the feedback from the claim layer. We conjecture that
both these problems are caused by insufficient training data.
As more data becomes available, we expect that both self-
training the entity layer and the feedback from the claim to
the entity layer be successful.

(e) Nevertheless, the table indicates that the joint model im-
proves the precision of the entity layer with respect to the
semi-supervised bottom-up model. The entity precision of
the joint hierarchical model is .8 points higher than that of
the semi-supervised bottom-up model. This is caused again
by the feedback from the claim layer to the entity layer.
Event though the claim layer in the joint model has low re-
call, its precision is quite high. This provides precise feed-
back to the entity layer on where claim boundaries exist,
which in turn enhances the precision of the entity layer.

(f) Despite its good performance, the claim oracle actually
indicates how difficult this domain is: because gold entities
are labeled only inside claims, one would expect this oracle
to score close to 100 F; points, because any entity mention
is a strong hint that the corresponding sentence belongs to
a claim. The fact that the claim oracle scores only 88 F;
points indicates that there is high ambiguity for the sen-
tences not covered by entities.

(g) The relatively low performance of the entity oracles in-
dicates that entity recognition in the legal domain is a hard
problem, even when the task is limited at analyzing the text
inside claims. We analyze the behavior of our entity models
later on this section.

In order to understand the relative importance of various
features in the Claim CRF, we perform ablation experi-
ments using the semi-supervised bottom-up architecture.
This test involves removing one feature-type at a time and
measuring the performance. The results of the test, dis-
played in Table 4 show that the model is heavily lexicalized
— the F1 performance of the CRF drops to as low as 36.02
when words are removed as features. The test also demon-
strates that the entities contribute about 5% points in F1,
indicating the utility of joint and bottom-up architectures.
Surprisingly, pagination does not carry a strong signal for
claim identification, and we attribute it to the noisy features
resulting from the OCR translation.

Table 5 lists the scores of our best model for each entity
type. The table indicates that claim numbers and patents
are recognized with acceptable performance, most likely
due to their simple structure. In contrast, claim types have
low performance. The explanation is that claim type men-
tions are often complex verbal or nominal phrases, which



Precision | Recall F,
All features 89.74 56.76 | 69.54
— lexicalization 61.84 2541 | 36.02
— pagination 88.33 57.3 | 69.51
— entities 80.00 54.05 | 64.52

Table 4: Ablation experiment for the Claim CRF using the
semi-supervised bottom-up architecture.

‘ Precision ‘ Recall ‘ F;

Claim Number 97.06 54.40 | 69.72
Claim Type 53.97 26.25 | 35.32
Law 71.57 36.32 | 48.18
Patent 94.93 80.94 | 87.38

Table 5: Results for the entity layer using the semi-
supervised bottom-up architecture.

are hard to model using first-order CRFs at word level. We
expect more successful models to use full syntax for this en-
tity type. Somewhat surprisingly, mentions of laws are also
recognized with low performance. The most common er-
ror for this type was caused by the document pre-processor.
Law mentions typically include non-ASCII characters (e.g.,
§), which are mistakenly converted to punctuation marks
by the text converters, and these are later seen as end-of-
sentence markers by our sentence boundary detector. Since
the entity tagger works at sentence level, it cannot recover
entities split in different sentences. This is yet another ex-
ample of a problem that a real-world IE system must ad-
dress.

For completeness, we show the results of the ablation ex-
periment for Entity CRF in Table 6. To avoid the complex
inter-dependencies between the two layers,'? in this exper-
iment we used the top-down architecture. Similarly to Ta-
ble 4, this experiment shows that our models are heavily
lexicalized: removing lexical features caused a drop in the
F; score of more than 11 points. The drop is not as high
as the drop reported in Table 6 because some of the lexical
information is captured by the POS tag and word shape fea-
tures. The features with the second highest impact are the
features extracted from the context surrounding the word
to be classified: ignoring this context causes a drop of ap-
proximately 3 F; points. These observations are consistent
with previous work on named entity recognition. What is
different in our domain is that POS information does not
help when combined with lexicalization: removing POS
features yields a slight improvement in the F; score. This
is caused by the fact that our data is significantly different
from the data used to train the POS tagger, both in quality
and in domain. Because of this, using the POS tagger in
this corpus generates more noise than signal.

Lastly, Figure 4 shows the learning curves for our three best
scoring approaches. The curves for Claim CRF show that
the bottom-up and the joint systems behave similarly. On
the other hand, the top-down approach scores consistently
lower, when using more than 20% of the data. For smaller
training corpora, the top-down approach performs better

2For example, in the bottom-up architecture the claim layer
depends on the performance of the entity layer, and, in turn, the
output constraints for the entity layer depend on the performance
of the claim layer.
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Figure 4: Learning curves of the best three models. The top
chart plots the F; score of the Claim CRF. The bottom chart
plots the F; score of the Entity CRF.

Precision | Recall F1
All features 86.42 52.63 | 65.42
— lexicalization 71.12 43.61 | 54.07
— POS tags 89.63 51.96 | 65.79
— word shape 86.80 51.63 | 64.75
— context 86.32 49.04 | 62.55

Table 6: Ablation experiment for the Entity CRF using the
top-down architecture. “context” indicates all features from
the previous and following word. The other three experi-
ments remove the corresponding feature group from all to-
kens (current, previous, and following word).

because the entity models are not strong enough to provide
useful signal in the bottom-up or joint systems. Extrapolat-
ing from this observation, we expect that the joint approach
will in turn start performing better than the bottom-up one
with enough training data. The bottom part of Figure 4
shows a similar story. The differences between the learning
curves for Entity CRF are not that large, but they are still
statistically significant for the majority of the plot points
and they lead to the same conclusions.

5. Related Work

In the field of IE, most body of work —too large to be cited
here— falls into one of the two classes described before:
flat extractors or deep, semantic extractors. The middle
ground has been addressed mainly by works that investigate
the recognition of nested named entity mentions, which are
common in the medical domain (Alex et al., 2007) and in
corpora on languages other than English (Marquez et al.,
2007). There are significant differences between our work
and nested NER: (a) nested NER is non-hierarchical in the
sense that all layers operate at token level, (b) there are no



missing labels in any layer. (Alex et al., 2007) also use a
combination of sequential CRF classifiers, but their joint
approach focuses on joint representation rather than joint
modeling.

The general idea of breaking documents into “zones”
with consequences for further processing is not new, e.g.,
Teufel and Moens used document segmentation based on
rhetorical structure for the summarization of scientific ar-
ticles (Teufel and Moens, 2002). A paper that is closer to
ours in terms of using pipelined or joint CRFs for natural
language processing from multiple layers is that of (Sutton
et al., 2007). In this work, the authors used a two layer fac-
torial CREF to jointly model noun-phrase chunking and POS
tagging, and demonstrated significant performance gains
compared to a pipelined system of independently trained
CRFs. For the same reasons as above, we argue that our
problem is more complex than theirs. The work of (Mc-
Donald et al., 2007) uses a hierarchical CRF with different
levels of granularity (documents and sentences) to model
coarse to fine sentiments in a document, but their data is
fully observed. Recent work of (Truyen et al., 2008) in-
deed proposes a hierarchical CRF that incorporates miss-
ing labels. They present detailed theoretical treatment of
the model in a missing labels scenario, but they test their
model only on fully observed data (e.g., joint POS tagging
and syntactic chunking).

6. Conclusions

This paper introduces a novel Information Extraction prob-
lem, where only parts of documents have relevance and lin-
guistic annotations are available only for these segments.
The problem has several hierarchical properties. First, the
data is annotated using a two-layer hierarchy: the top layer
marks the relevant text segments and the bottom layer an-
notates domain-specific entity mentions only in these seg-
ments. Due to this approach, the data for the bottom layer
is only partially labeled, i.e., entity mentions outside of the
relevant text segments are not annotated. Second, the two
layers are modeled at different granularity: the top layer us-
ing the sentence as the atomic element and the bottom layer
using words.

We investigate this problem on a real-world application
from the IP litigation domain. We introduce two models
that outperform significantly the top-down cascaded ap-
proach. Using a simple semi-supervised approach for the
entity layer we implement a bottom up model and then we
extend it to a joint hierarchical CRF. We discuss the advan-
tages and limitations of all approaches.

All in all, this work shows that complex IE systems can be
built and trained using hierarchical, partially-labeled data.
We believe that this reduces annotation efforts, which is an
important constraint in the development of any supervised
IE system. To further improve the performance of our sys-
tem without increasing the annotation burden on the legal
experts we plan to: (a) combine our approach with unsuper-
vised topic segmentation algorithms (Allen, 2002), which
will be used to enhance our claim extractor, and (b) com-
bine our models with rule-based systems, e.g., we expect
a rule-based patent mention extractor to perform well, and
to provide hints about where claim information is concen-

trated. On the legal side of project, in future work we will
extend our entity extraction model with other entity types of
interest, e.g., product names, and our claim detection model
with other types of claims, e.g, trade secret or trademark vi-
olation.
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