
Deep Neural Language Models for Machine Translation

Minh-Thang Luong Michael Kayser Christopher D. Manning

Computer Science Department, Stanford University, Stanford, CA, 94305

{lmthang, mkayser, manning}@stanford.edu

Abstract

Neural language models (NLMs) have

been able to improve machine translation

(MT) thanks to their ability to generalize

well to long contexts. Despite recent suc-

cesses of deep neural networks in speech

and vision, the general practice in MT

is to incorporate NLMs with only one or

two hidden layers and there have not been

clear results on whether having more lay-

ers helps. In this paper, we demonstrate

that deep NLMs with three or four lay-

ers outperform those with fewer layers in

terms of both the perplexity and the trans-

lation quality. We combine various tech-

niques to successfully train deep NLMs

that jointly condition on both the source

and target contexts. When reranking n-

best lists of a strong web-forum baseline,

our deep models yield an average boost

of 0.5 TER / 0.5 BLEU points compared

to using a shallow NLM. Additionally, we

adapt our models to a new sms-chat do-

main and obtain a similar gain of 1.0 TER

/ 0.5 BLEU points.1

1 Introduction

Deep neural networks (DNNs) have been success-

ful in learning more complex functions than shal-

low ones (Bengio, 2009) and exceled in many

challenging tasks such as in speech (Hinton et al.,

2012) and vision (Krizhevsky et al., 2012). These

results have sparked interest in applying DNNs

to natural language processing problems as well.

Specifically, in machine translation (MT), there

1Our code and related materials are publicly available at
http://stanford.edu/˜lmthang/nlm.

has been an active body of work recently in uti-

lizing neural language models (NLMs) to improve

translation quality. However, to the best of our

knowledge, work in this direction only makes use

of NLMs with either one or two hidden layers. For

example, Schwenk (2010) and Son et al. (2012)

use 1-hidden-layer NLMs for reranking.2 Vaswani

et al. (2013) considered NLMs with two hidden

layers for decoding but provided no comparison

among models of various depths. Schwenk et al.

(2012) and Devlin et al. (2014) reported only a

small gain with 2-hidden-layer NLMs over single-

layer ones.3 There have not been clear results on

whether adding more layers to NLMs helps.

In this paper, we demonstrate that deep NLMs

with three or four layers are better than those

with fewer layers in terms of the perplexity and

the translation quality. We detail how we com-

bine various techniques from past work to suc-

cessfully train deep NLMs that condition on both

the source and target contexts. When reranking n-

best lists of a strong web-forum MT baseline, our

deep models achieve an additional improvement

of 0.5 TER / 0.5 BLEU compared to using a shal-

low NLM. Furthermore, by fine-tuning general in-

domain NLMs with out-of-domain data, we obtain

a similar boost of 1.0 TER / 0.5 BLEU points over

a strong domain-adapted sms-chat baseline com-

pared to utilizing a shallow NLM.

2 Neural Language Models

We briefly describe the NLM architecture and

training objective used in this work as well as com-

2Schwenk (2010) builds language models while Son et al.
(2012) forms translation models.

3Schwenk et al. (2012) constructs language models for
reranking while Devlin et al. (2014) creates translation mod-
els for both reranking and decoding.

pare our approach to other related work.

Architecture. Neural language models are fun-

damentally feed-forward networks as described in

(Bengio et al., 2003), but not necessarily lim-

ited to only a single hidden layer. Like any

other language model, NLMs specify a distribu-

tion, p(w|c), to predict the next word w given a

context c. The first step is to lookup embeddings

for words in the context and concatenate them to

form an input, h(0), to the first hidden layer. We

then repeatedly build up hidden representations as

follows, for l = 1, . . . , n:

h(l) = f
(

W (l)h(l−1) + b(l)
)

(1)

where f is a non-linear fuction such as tanh. The

predictive distribution, p(w|c), is then derived us-

ing the standard softmax:

s = W (sm)h(n) + b(sm)

p(w|c) =
exp(sw)

∑

w∈V exp(sw)

(2)

Objective. The typical way of training NLMs is

to maximize the training data likelihood, or equiv-

alently, to minimize the cross-entropy objective of

the following form:
∑

(c,w)∈T − log p(w|c).

Training NLMs can be prohibitively slow due

to the computationally expensive softmax layer.

As a result, past works have tried to use a more

efficient version of the softmax such as the hi-

erarchical softmax (Morin, 2005; Mnih and Hin-

ton, 2007; Mnih and Hinton, 2009) or the class-

based one (Mikolov et al., 2010; Mikolov et al.,

2011). Recently, the noise-contrastive estimation

(NCE) technique (Gutmann and Hyvärinen, 2012)

has been applied to train NLMs in (Mnih and Teh,

2012; Vaswani et al., 2013) to avoid explicitly

computing the normalization factors.

Devlin et al. (2014) used a modified version

of the cross-entropy objective, the self-normalized

one. The idea is to not only improve the predic-

tion, p(w|c), but also to push the normalization

factor per context, Zc, close to 1:

J =
∑

(c,w)∈T

− log p(w|c) + α log2(Zc) (3)

While self-normalization does not lead to speed up

in training, it allows trained models to be applied

efficiently at test time without computing the nor-

malization factors. This is similar in flavor to NCE

but allows for flexibility (through α) in how hard

we want to “squeeze” the normalization factors.

Training deep NLMs. We follow (Devlin et al.,

2014) to train self-normalized NLMs, condition-

ing on both the source and target contexts. Unlike

(Devlin et al., 2014), we found that using the recti-

fied linear function, max{0, x}, proposed in (Nair

and Hinton, 2010), works better than tanh. The

rectified linear function was used in (Vaswani et

al., 2013) as well. Furthermore, while these works

use a fixed learning rate throughout, we found that

having a simple learning rate schedule is useful

in training well-performing deep NLMs. This has

also been demonstrated in (Sutskever et al., 2014;

Luong et al., 2015) and is detailed in Section 3.

We do not perform any gradient clipping and no-

tice that learning is more stable when short sen-

tences of length less than or equal to 2 are re-

moved. Bias terms are used for all hidden layers

as well as the softmax layer as described earlier,

which is slightly different from other work such as

(Vaswani et al., 2013). All these details contribute

to our success in training deep NLMs.

For simplicity, the same vocabulary is used for

both the embedding and the softmax matrices.4 In

addition, we adopt the standard softmax to take ad-

vantage of GPUs in performing large matrix mul-

tiplications. All hyperparameters are given later.

3 Experiments

3.1 Data

We use the Chinese-English bitext in the DARPA

BOLT (Broad Operational Language Translation)

program, with 11.1M parallel sentences (281M

Chinese words and 307M English words). We re-

serve 585 sentences for validation, i.e., choosing

hyperparameters, and 1124 sentences for testing.5

3.2 NLM Training

We train our NLMs described in Section 2 with

SGD, using: (a) a source window of size 5, i.e.,

11-gram source context6, (b) a 4-word target his-

tory, i.e., 5-gram target LM, (c) a self-normalized

weight α= 0.1, (d) a mini-batch of size 128, and

(e) a learning rate of 0.1 (training costs are nor-

malized by the mini-batch size). All weights are

uniformly initialized in [−0.01, 0.01]. We train

4Some work (Schwenk, 2010; Schwenk et al., 2012) uti-
lize a smaller softmax vocabulary, called short-list.

5The test set is from BOLT and labeled as p1r6 dev.
6We used an alignment heuristic similar to Devlin et al.

(2014) but applicable to our phrase-based MT system.

Models Valid Test | logZ|

1 layer 9.39 8.99 0.51

2 layers 9.20 8.96 0.50

3 layers 8.64 8.13 0.43

4 layers 8.10 7.71 0.35

Table 1: Training NLMs – validation and test

perplexities achieved by self-normalized NLMs of

various depths. We report the | logZ| value (base

e), similar to Devlin et al. (2014), to indicate how

good each model is in pushing the log normaliza-

tion factors towards 0. All perplexities are derived

by explicitly computing the normalization factors.

our models for 4 epochs (after 2 epochs, the learn-

ing rate is halved every 0.5 epoch). The vocab-

ularies are limited to the top 40K frequent words

for both Chinese and English. All words not in

these vocabularies are replaced by a universal un-

known symbol. Embeddings are of size 256 and

all hidden layers have 512 units each. Our train-

ing speed on a single Tesla K40 GPU device is

about 1000 target words per second and it gener-

ally takes about 10-14 days to fully train a model.

We present the NLM training results in Table 1.

With more layers, the model succeeds in learning

more complex functions; the prediction, hence,

becomes more accurate as evidenced by smaller

perplexities for both the validation and test sets.

Interestingly, we observe that deeper nets can learn

self-normalized NLMs better: the mean log nor-

malization factor, | logZ| in Eq. (3), is driven to-

wards 0 as the depth increases.7

3.3 MT Reranking with NLMs

Our MT models are built using the Phrasal MT

toolkit (Cer et al., 2010). In addition to the stan-

dard dense feature set8, we include a variety of

sparse features for rules, word pairs, and word

classes, as described in (Green et al., 2014). Our

decoder uses three language models.9 We use a

tuning set of 396K words in the newswire and web

domains and tune our systems using online ex-

pected error rate training as in (Green et al., 2014).

7As a reference point, though not directly comparable,
Devlin et al. (2014) achieved 0.68 for | logZ| on a different
test set with the same self-normalized constant α=0.1.

8Consisting of forward and backward translation mod-
els, lexical weighting, linear distortion, word penalty, phrase
penalty and language model.

9One is trained on the English side of the bitext, one
is trained on a 16.3-billion-word monolingual corpus taken
from various domains, and one is a class-based language
model trained on the same large monolingual corpus.

System
dev test1 test2

T↓ B↑ T↓ B↑ T↓ B↑

baseline 53.7 33.1 55.1 31.3 63.5 16.5

Reranking

1 layer 52.9 34.3 54.5 32.0 63.1 16.7

2 layers 52.7 34.1 54.3 31.9 63.0 16.8

3 layers 52.5 34.5 54.3 32.3 62.5 17.3

4 layers 52.6 34.7 54.1 32.4 62.7 17.2

vs. baseline +1.2† +1.6† +1.0† +1.1† +1.0† +0.8†

vs. 1 layer +0.4† +0.4† +0.4† +0.4† +0.6† +0.6†

Table 2: Web-forum Results – TER (T)

and BLEU (B) scores on both the dev set

(dev10wb dev), used to tune reranking weights,

and the test sets (dev10wb syscomtune and

p1r6 dev accordingly). Relative improvements

between the best system and the baseline as well

as the 1-layer model are bolded. † marks improve-

ments that are statistically significant (p<0.05).

Our tuning metric is (BLEU-TER)/2.

We run a discriminative reranker on the 1000-

best output of a decoder with MERT. The features

used in reranking include all the dense features,

an aggregate decoder score, and an NLM score.

We learn the reranker weights on a second tuning

set, different from the decoder tuning set, to make

the reranker less biased towards the dense features.

This second tuning set consists of 33K words of

web-forum text and is important to obtain good

improvements with reranking.

3.4 Results

As shown in Table 2, it is not obvious if the depth-

2 model is better than the single layer one, both

of which are what past work used. In contrast,

reranking with deep NLMs of three or four lay-

ers are clearly better, yielding average improve-

ments of 1.0 TER / 1.0 BLEU points over the base-

line and 0.5 TER / 0.5 BLEU points over the sys-

tem reranked with the 1-layer model, all of which

are statisfically significant according to the test de-

scribed in (Riezler and Maxwell, 2005).

The fact that the improvements in terms of the

intrinsic metrics listed in Table 1 do translate into

gains in translation quality is interesting. It rein-

forces the trend reported in (Luong et al., 2015)

that better source-conditioned perplexities lead to

better translation scores. This phenomon is a use-

ful result as in the past, many intrinsic metrics,

e.g., alignment error rate, do not necessarily cor-

relate with MT quality metrics.

System
dev test

T↓ B↑ T↓ B↑

baseline 62.2 18.7 57.3 23.3

Reranking

1 layer (5.42, 0.51) 60.1 22.0 56.2 25.9

2 layers (5.50, 0.51) 60.7 21.5 56.3 26.0

3 layers (5.34 0.43) 59.9 21.4 55.2 26.4

vs. baseline +2.3‡ +3.3‡ +2.1‡ +3.1‡

vs. 1 layer +0.2 -0.6 +1.0‡ +0.5

Table 3: Domain-adaptation Results – transla-

tion scores for the sms-chat domain similar to

Table 2. We use p2r2smscht dev for dev and

p2r2smscht syscomtune for test. The test perplex-

ities and the | logZ| values of our domain-adapted

NLMs are shown in italics. ‡ marks improvements

that are statistically significant (p<0.01).

3.5 Domain Adaptation

For the sms-chat domain, we use a tune set of

260K words in the newswire, web, and sms-chat

domains to tune the decoder weights and a sepa-

rate small, 8K words set to tune reranking weights.

To train adapted NLMs, we use models previously

trained on general in-domain data and further fine-

tune with out-domain data for about 4 hours.10

Similar to the web-forum domain, for sms-chat,

Table 3 shows that on the test set, our deep NLM

with three layers yields a significant gain of 2.1

TER / 3.1 BLEU points over the baseline and 1.0

TER / 0.5 BLEU points over the 1-layer reranked

system. It is worth pointing out that for such a

small amount of out-domain training data, depth

becomes less effective as exhibited through the in-

significant BLEU gain in test and a drop in dev

when comparing between the 1- and 3-layer mod-

els. We exclude the 4-layer NLM as it seems to

have overfitted the training data. Nevertheless, we

still achieve decent gains in using NLMs for MT

domain adaptation.

4 Analysis

4.1 NLM Training

We show in Figure 1 the learning curves for vari-

ous NLMs, demonstrating that deep nets are better

than the shallow NLM with a single hidden layer.

Starting from minibatch 20K, the ranking is gen-

erally maintained that deeper NLMs have better

10Our sms-chat corpus consists of 146K sentences (1.6M
Chinese and 1.9M English words). We randomly select 3000
sentences for validation and 3000 sentences for test. Models
are trained for 8 iterations with the same hyperparameters.

1 2 3 4 5 6 7 8 9 10
x 10

4

3

3.5

4

4.5

5

5.5

6

6.5

Mini−batches

C
ro

ss
−

E
nt

ro
py

			
	

1 layer
2 layers
3 layers
4 layers

Figure 1: NLM Learning Curve – test cross-

entropies (loge perplexities) for various NLMs.

cross-entropies. The gaps become less discernible

from minibatch 30K onwards, but numerically, as

the model becomes deeper, the average gaps, in

perplexities, are consistently 40.1, 1.1, and 2.0.

4.2 Reranking Settings

In Table 4, we compare reranking using all dense

features (All) to conditions which use only dense

LM features (LM) and optionally, include a word

penalty (WP) feature. All these settings include

an NLM score and an aggregate decoder score. As

shown, it is best to include all dense features at

reranking time.

All LMs + WP LMs

1 layer 11.3 11.3 11.4

2 layers 11.2 11.4 11.5

3 layers 11.0 11.1 11.4

4 layers 10.9 11.2 11.3

Table 4: Reranking Conditions – (TER-BLEU)/2

scores when reranking the web-forum baseline.

5 Related Work

It is worth mentioning another active line of re-

search in building end-to-end neural MT systems

(Kalchbrenner and Blunsom, 2013; Sutskever et

al., 2014; Bahdanau et al., 2015; Luong et al.,

2015; Jean et al., 2015). These methods have

not yet demonstrated success on challenging lan-

guage pairs such as English-Chinese. Arsoy et al.

(2012) have preliminarily examined deep NLMs

for speech recognition, however, we believe, this

is the first work that puts deep NLMs into the con-

text of MT.

6 Conclusion

In this paper, we have bridged the gap that past

work did not show, that is, neural language mod-

els with more than two layers can help improve

translation quality. Our results confirm the trend

reported in (Luong et al., 2015) that source-

conditioned perplexity strongly correlates with

MT performance. We have also demonstrated the

use of deep NLMs to obtain decent gains in out-

of-domain conditions.

Acknowledgment

We gratefully acknowledge support from a gift

from Bloomberg L.P. and from the Defense

Advanced Research Projects Agency (DARPA)

Broad Operational Language Translation (BOLT)

program under contract HR0011-12-C-0015

through IBM. Any opinions, findings, and con-

clusions or recommendations expressed in this

material are those of the author(s) and do not

necessarily reflect the view of DARPA, or the US

government. We thank members of the Stanford

NLP Group as well as the annonymous reviewers

for their valuable comments and feedbacks.

References

Ebru Arsoy, Tara N. Sainath, Brian Kingsbury, and
Bhuvana Ramabhadran. 2012. Deep neural network
language models. In NAACL WLM Workshop.

D. Bahdanau, K. Cho, and Y. Bengio. 2015. Neural
machine translation by jointly learning to align and
translate. In ICLR.

Y. Bengio, R. Ducharme, P. Vincent, and C. Jan-
vin. 2003. A neural probabilistic language model.
JMLR, 3:1137–1155.

Yoshua Bengio. 2009. Learning deep architectures for
ai. Foundations and Trends in Machine Learning,
2(1):1–127, January.

D. Cer, M. Galley, D. Jurafsky, and C. D. Manning.
2010. Phrasal: A statistical machine translation
toolkit for exploring new model features. In ACL,
Demonstration Session.

J. Devlin, R. Zbib, Z. Huang, T. Lamar, R. Schwartz,
and J. Makhoul. 2014. Fast and robust neural net-
work joint models for statistical machine translation.
In ACL.

S. Green, D. Cer, and C. D. Manning. 2014. An em-
pirical comparison of features and tuning for phrase-
based machine translation. In WMT.

Michael Gutmann and Aapo Hyvärinen. 2012. Noise-
contrastive estimation of unnormalized statistical
models, with applications to natural image statistics.
JMLR, 13:307–361.

G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed,
N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen,
T. Sainath, and B. Kingsbury. 2012. Deep neural
networks for acoustic modeling in speech recogni-
tion. IEEE Signal Processing Magazine.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic,
and Yoshua Bengio. 2015. On using very large tar-
get vocabulary for neural machine translation. In
ACL.

N. Kalchbrenner and P. Blunsom. 2013. Recurrent
continuous translation models. In EMNLP.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. 2012.
ImageNet classification with deep convolutional
neural networks. In NIPS.

M.-T. Luong, I. Sutskever, Q. V. Le, O. Vinyals, and
W. Zaremba. 2015. Addressing the rare word prob-
lem in neural machine translation. In ACL.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan
Cernocký, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In Inter-
speech.

Tomas Mikolov, Stefan Kombrink, Lukas Burget, Jan
Cernocký, and Sanjeev Khudanpur. 2011. Exten-
sions of recurrent neural network language model.
In ICASSP.

Andriy Mnih and Geoffrey Hinton. 2007. Three new
graphical models for statistical language modelling.
In ICML.

Andriy Mnih and Geoffrey Hinton. 2009. A scalable
hierarchical distributed language model. In NIPS.

Andriy Mnih and Yee Whye Teh. 2012. A fast and
simple algorithm for training neural probabilistic
language models. In ICML.

Frederic Morin. 2005. Hierarchical probabilistic neu-
ral network language model. In AISTATS.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In ICML.

Stefan Riezler and T. John Maxwell. 2005. On some
pitfalls in automatic evaluation and significance test-
ing for MT. In ACL Workshop, Intrinsic/Extrinsic
Evaluation Measures for MT and Summarization.

H. Schwenk, A. Rousseau, and M. Attik. 2012. Large,
pruned or continuous space language models on a
gpu for statistical machine translation. In NAACL
WLM workshop.

H. Schwenk. 2010. Continuous space language mod-
els for statistical machine translation. The Prague
Bulletin of Mathematical Linguistics, (93):137–146.

Le Hai Son, Alexandre Allauzen, and François Yvon.
2012. Continuous space translation models with
neural networks. In NAACL-HLT.

I. Sutskever, O. Vinyals, and Q. V. Le. 2014. Sequence
to sequence learning with neural networks. In NIPS.

Ashish Vaswani, Yinggong Zhao, Victoria Fossum, and
David Chiang. 2013. Decoding with large-scale
neural language models improves translation. In
EMNLP.

