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Abstract

We examine the ability of several mod-

els of computation and storage to explain

reading time data. Specifically, we demon-

strate on both the Dundee and the MIT

reading time corpora, that fragment gram-

mars, a model that optimizes the trade-

off between computation and storage, is

able to better explain people’s reaction

times than two baseline models which ex-

clusively favor either storage or computa-

tion. Additionally, we make a contribu-

tion by extending an existing incremental

parser to handle more general grammars

and scale well to larger rule and data sets.1

1 Introduction

A basic question for theories of language repre-

sentation, processing, and acquisition is how the

linguistic system balances storage and reuse of

lexical units with productive computation. At

first glance, the question appears simple: words

are stored; phrases and sentences are computed.

However, a closer look quickly invalidates this

picture. Some canonically computed structures,

such as phrases, must be stored, as witnesses

by verbal idioms like leave no stone unturned2

(Nunberg et al., 1994). There is also composi-

tionality at the sub-word level: affixes like ness

in pine-scentedness, are almost always composed

productively, whereas other affixes, e.g., th in

warmth, are nearly always stored together with

stems (O’Donnell, 2015). Facts such as these have

∗indicates equal contribution.
1Our code and data are available at http://

stanford.edu/˜lmthang/earleyx/.
2Meaning: prevent any rock from remaining rightside up.

led to a consensus in the field that storage and

computation are properties that cut across differ-

ent kinds of linguistic units and levels of linguistic

structure (Di Sciullo and Williams, 1987)—giving

rise to hetergeneous lexicon3 theories, in the ter-

minology of Jackendoff (2002b).

Naturally, the question of what is computed

and what is stored has been the focus of intense

empirical and theoretical research across the lan-

guage sciences. On the empirical side, it has

been the subject of many detailed linguistic anal-

yses (e.g., Jackendoff (2002a)) and specific phe-

nomena such as composition versus retrieval in

word or idiom processing have been examined

in many studies in experimental psycholinguistics

(Hay, 2003; O’Donnell, 2015). On the theoretical

side, there have been many proposals in linguistics

regarding the structure and content of the hetero-

geneous lexicon (e.g., Fillmore et al. (1988), Jack-

endoff (2002b)). More recently, there have been a

number of proposal from computational linguis-

tics and natural language processing for how a

learner might infer the correct pattern of compu-

tation and storage in their language (De Marcken,

1996; Bod et al., 2003; Cohn et al., 2010; Post and

Gildea, 2013; O’Donnell, 2015).

However, there remains a gap between de-

tailed, phenomenon-specific studies and broad ar-

chitectural proposals and learning models. Re-

cently, however, a number of methodologies have

emerged which promise to bridge this gap. These

methods make use of broad coverage probabilis-

tic models which can encode representational and

inferential assumptions, but which can also be ap-

plied to make detailed predictions on large psy-

cholinguistic datasets encompassing a wide vari-

3A hetergeneous lexicon contains not only words but also
affixes, stems, and phrasal units such as idioms.



ety of linguistic phenomena. In the realm of syn-

tax, one recent approach has been to use proba-

bilistic models of sentence structures, paired with

incremental parsing algorithms, to produce precise

quantitative predictions for variables such as read-

ing times (Roark et al., 2009) or eye fixation times

(Demberg and Keller, 2008; Mitchell et al., 2010;

Frank and Bod, 2011; Fossum and Levy, 2012;

van Schijndel and Schuler, 2013). To date, no

models of storage and computation in syntax have

been applied to predict measures of human read-

ing difficulty.

In this work, we employ several of the models

of computation and storage studied by O’Donnell

(2015), to examine human sentence process-

ing. We demonstrate that the fragment grammars

model (O’Donnell et al., 2009; O’Donnell et al.,

2011)—a model that treats the question of what to

store and what to compute productively as a prob-

abilistic inference—better explains human read-

ing difficulty than two “limiting-case” baselines,

MAP adaptor grammars (maximal storage) and

Dirichlet-multinomial PCFG (maximal computa-

tion), in two datasets: the Dundee eye-tracking

corpus (Kennedy and Pynte, 2005) and the MIT

reading time dataset (Bachrach et al., 2009).

2 Goals and Scope of the Paper

Before moving on, we remark on the goals and

scope of the current study. The emergence meth-

ods connecting wide-coverage probabilistic gram-

mars and psycholinguistic data offer great poten-

tial to test theoretical models quantitatively, at

scale, and on a variety of detailed phenomena.

However, studies using these methods also involve

many moving parts, often making their results dif-

ficult to interpret.

To connect probabilistic models of syntactic

computation and storage to reading time or eye fix-

ation data, practioners need to:

1. Preprocess train and test data sets by tok-

enizing words, limiting sentence lengths, and

handling unknown words.

2. Decide on a suitable grammatical formalism:

determine a hypothesis space of stored items

and specify a probability model over that

space.

3. Choose and implement a probabilistic model

to extract grammars from the training set.

4. Pick a test set annotated with reading diffi-

culty information, e.g., eye fixation or read-

ing times.

5. Choose a specific incremental parsing algo-

rithm to generate word-by-word parsing pre-

dictions.

6. Determine the theoretical quantity that will

be used as a predictor, e.g., surprisal or en-

tropy reduction.

7. Choose a suitable linking model to regress

theoretical predictions against human data,

controlling for participant-specific factors

and nuisance variables.

Given this wide array of design decisions, it

is often difficult to compare results across stud-

ies or to determine which theoretical assumptions

are crucial to the performance of models. For the

field to make progress, studies must be replicable

and each of the above factors (and potentially oth-

ers) must be varied systematically in order to iso-

late their specific consequences. We contribute to-

wards this process in three ways.

First, we report results for three models which

differ only in terms of how they address the prob-

lem of what to store and what to compute (see

Section 3). Otherwise, modeling and analysis as-

sumptions are exactly matched. Moreover, the

models represent three “limiting cases” in the

space of storage and computation — store all max-

imal structures, store only minimal structures, and

treat the problem as a probabilistic inference. Al-

though none of the models represents a state-of-

the-art model of syntactic structure, this study

should provide important baselines against which

to compare in future proposals.

Second, to make this study possible, we extend

an existing incremental parser to address two tech-

nical challenges by: (a) handling more general in-

put grammars and (b) scaling better to extremely

large rule sets. This parser can be used with any

model that can be projected to or approximated by

a probabilistic context-free grammar. We make

this parser available to the community for future

research.

Third, and finally, unlike previous studies

which only report results on a single dataset, we

demonstrate consistent findings over two popular

datasets, the Dundee eye-tracking corpus and the

MIT reading times corpus. We make available our



predicted values for all examined data points to-

gether with our analysis scripts. This should fa-

cilitate the replication of these specific results and

direct numerical comparison with later proposals.

3 Approaches to Computation and

Storage

In this paper we study the ability of three mod-

els to predict reading difficulty as measured

by either eye-fixation or reading times — the

full-parsing model, implemented by Dirichlet-

multinomial probabilistic context-free grammars

(DMPCFG) (Kurihara and Sato, 2006; Johnson et

al., 2007), the full-listing mode, implemented by

maximum a posteriori adaptor grammars (MAG)

(Johnson et al., 2006), and the inference-based

model, implemented by fragment grammars (FG)

(O’Donnell, 2015).

All three models start with the same un-

derlying base system—a context-free grammar

(CFG) specifying the space of possible syntactic

derivations—and the same training data—a cor-

pus of syntactic trees. However, the models dif-

fer in what they store and what they compute. The

full-parsing model can be understood as a fully-

compositional baseline equivalent to a Bayesian

version of the underlying CFG. The full-listing

model, by contrast, stores all full derivations (i.e.,

all derivations down to terminal symbols) and sub-

derivations in the input corpus. These stored

(sub)trees can be thought of as extending the CFG

base component with rules that directly rewrite

nonterminal symbols to sequence of terminals in

a single derivational step.

Finally, the inference-based model treats the

problem of what tree fragments to store, and which

parts of derivations to compute as an inference

in a Bayesian framework, learning to store and

and reuse those subtrees which best explain the

data while taking into account two prior biases

for simplicity. The first bias prefers to explain

the data in terms of a smaller lexicon of stored

tree fragments. The second bias prefers to ac-

count for each input sentence with smaller num-

bers of derivational steps (i.e., fragments). Note

that these two biases compete and thus give rise

to a tradeoff. Storing smaller, more abstract frag-

ments allows the model to represent the input with

a more compact lexicon, at the cost of using a

greater number of rules, on average, in individual

derivations. Storing larger, more concrete frag-

ments allows the model to derive individual sen-

tences using a smaller number of steps, at the cost

of expanding the size of the stored lexicon. The

inference-based model can be thought of as ex-

tending the base CFG with rules, inferred from the

data, that expand larger portions of derivation-tree

structure in single steps, but can also include non-

terminals on their right-hand side (unlike the full-

listing model).

As we mentioned above, none of these models

take into account various kinds of structure—such

as headedness or other category-refinements—that

are known to be necessary to achieve state-of-the-

art syntactic parsing results (Petrov et al., 2006;

Petrov and Klein, 2007). However, the results re-

ported below should be useful for situating and in-

terpreting the performance of future models which

do integrate such structure. In particular, these re-

sults will enable ablation studies which carefully

vary different representational devices.

4 Human Reading Time Prediction

To understand the effect of different approaches to

computation and storage in explaining human re-

action times, we employ the surprisal theory pro-

posed by Hale (2001) and Levy (2008). These

studies introduced surprisal as a predictor of the

difficulty in incremental comprehension of words

in a sentence. Because all of the models described

in the last section can be used to compute sur-

prisal values, they can be used to provide predic-

tions for processing complexity and hence, gain

insights about the use of stored units in the human

sentence processing. The surprisal values for these

different models are dervied by means of a proba-

bilistic, incremental Earley parser (Stolcke, 1995;

Earley, 1968), which we describe below.

4.1 Surprisal Theory

The surprisal theory of incremental language pro-

cessing characterizes the lexical predictability of a

word wt in terms of a surprisal value, the negative

log of the conditional probability of a word given

its preceding context, − logP (wt|w1 . . . wt−1).
Higher surprisal values mean smaller conditional

probabilities, that is, words that are less pre-

dictable are more surprising to the language user

and thus harder to process. Surprisal theory was

first introduced in Hale (2001) and studied more

extensively by Levy (2008). It has also been

shown to have a strong correlation with reading



time duration in both eye-tracking and self-paced

reading studies (Boston et al., 2008; Demberg and

Keller, 2008; Roark et al., 2009; Frank, 2009; Wu

et al., 2010; Mitchell et al., 2010).

4.2 The Incremental Parser

The computation of surprisal values requires ac-

cess to an incremental parser which can compute

the prefix probabilities associated with a string s

under some grammar—the total probability over

all derivation using the grammar which generate

strings prefixed by s (Stolcke, 1995). The pre-

fix probability is an important concept in compu-

tational linguistics because it enables probabilis-

tic predictions of possible next words (Jelinek and

Lafferty, 1991) via the conditional probabilities

P (wt|w1 . . . wt−1) = P (w1...wt)
P (w1...wt−1)

. It also allows

estimation of incremental costs in a stack decoder

(Bahl et al., 1983). Luong et al. (2013) used pre-

fix probabilities as scaling factors to avoid numer-

ical underflow problems when parsing very long

strings.

We extend the implementation by Levy (2008)

of the probabilistic Earley parser described in Stol-

cke (1995) which computes exact prefix probabil-

ities. Our extension allows the parser (a) to handle

arbitrary CFG rewrite rules and (b) to scale well to

large grammars.4

The implementation of Levy (2008) only ex-

tracts grammars implicit in treebank inputs and

restricts all pre-terminal rules to single-terminal

rewrites. To approximate the incremental predic-

tions of the models in this paper, we require the

ability to process rules that include sequences of

multiple terminal and non-terminal symbols on

their right-hand side. Thus, we extend the im-

plementation to allow efficient processing of such

structures (property a).

With regards to property (b), we note that pars-

ing against the full-listing model (MAG) is pro-

hibitively slow because the approximating gram-

mars for the model contain PCFG rules which ex-

haustively list the mappings from every nontermi-

nal in the input corpus to its terminal substring,

leading to thousands of rules. For example, for the

Brown corpus section of the Penn Treebank (Mar-

4Other recent studies of human reading data have made
use of the parser of Roark (2001). However, this parser inco-
porates many specific design decisions and optimizations—
”baking in” aspects of both the incremental parsing algorithm
and a model of syntactic structure. As such, since it does not
accept arbitrary PCFGs, it is unsuitable for this present study.

cus et al., 1993), we extracted 778K rules for the

MAG model, while the number of rules in the DM-

PCFG and the inference-based (FG) grammars are

75K and 146K respectively. Parsing the MAG is

also memory intensive due to multi-terminal rules

that rewrite to long sequences of terminals, be-

cause, for example, an S node must rewrite to an

entire sentence. Such rules result in an exploding

number of states during parsing as the Earley dot

symbol moves from left to right.

To tackle this issue, we utilize a trie data struc-

ture to efficiently store multi-terminal rules and

quickly identify (a) which rules rewrite to a par-

ticular string and (b) which rules have a particular

prefix.5 These extensions allow our implementa-

tion to incorporate multi-terminal rules in the pre-

diction step of the Earley algorithm, and to effi-

ciently incorporate which of the many rules can

contribute to the prefix probability in the Earley

scanning step.

We believe that our implementation should be

useful to future studies of reading difficulty, allow-

ing efficient computation of prefix probabilities for

any model which can be projected to (or approxi-

mated by) a PCFG—even if that approximation is

very large.

5 Experiments

5.1 Data

Our three models models are trained on the Wall

Street Journal (WSJ) portion of the Penn Treebank

(Marcus et al., 1994). In particular, because we

have access to gold standard trees from this cor-

pus, it is possible to compute the exact maximum a

posteriori full-parsing (DMPCFG) and full-listing

(MAG) models, and output PCFGs corresponding

to these models.6

We evaluate our models on two different cor-

pora: (a) the Dundee corpus (Kennedy and Pynte,

2005) with eye-tracking data on naturally occur-

ring English news text and (b) the MIT corpus

(Bachrach et al., 2009) with self-paced reading

data on hand-constructed narrative text. The for-

5Specifically, terminal symbols are used as keys in our
trie and at each trie node, e.g., corresponding to the key se-
quence a b c, we store two lists of nonterminals: (a) the
complete list – where each non-terminal X corresponds to
a multi-terminal rule X → a b c, and (b) the prefix list –
where each non-terminal X corresponds to a multi-terminal
rule X → a b c . . . d. We also accumulated probabilities for
each non-terminal in these two lists as we traverse the trie.

6Note that for DMPCFG, this PCFG is exact, whereas for
MAG, it represents a truncated approximation.



mer has been a popular choice in many sentence

processing studies (Demberg and Keller, 2008;

Mitchell et al., 2010; Frank and Bod, 2011; Fos-

sum and Levy, 2012; van Schijndel and Schuler,

2013). The latter corpus, with syntactically com-

plex sentences constructed to appear relatively

natural, is smaller in size and has been used in

work such as Roark et al. (2009) and Wu et al.

(2010). We include both corpora to demonstrate

the reliability of our results.

Detailed statistics of these corpora are given

in Table 1. The last column indicates the num-

ber of data points (i.e., word-specific fixation or

reading times) used in our analyses below. This

dataset was constructed by excluding data points

with zero reading times and removing rare words

(with frequencies less than 5 in the WSJ training

data). We also exclude long sentences (of greater

than 40 words) for parsing efficiency reasons.

sent word subj orig filtered

Dundee 2,370 58,613 10 586,131 228,807

MIT 199 3,540 23 81,420 69,702

Table 1: Summary statistics of reading time cor-

pora – shown are the number of sentences, words,

subjects, data points before (orig) and after filter-

ing (filtered).

5.2 Metrics

Following (Frank and Bod, 2011; Fossum and

Levy, 2012), we present two analyses of the sur-

prisal predictions of our models: (a) a likelihood

evaluation and (b) a psychological measure of the

ability of each model to predict reading difficulty.

For the former, we simply average the negative

surprisal values, i.e., log p(wn|w1 . . . wn−1), of all

words in the test set, computing the average log

likelihood of the data under each model.7 This can

be understood as simply a measure of goodness of

fit of each model on each test data set.

For the latter, we perform a linear mixed-effects

analysis (Baayen et al., 2008) to evaluate how well

the model explains reading times in the test data.

The lme4 package (Bates et al., 2011) is used

to fit our linear mixed-effects models. Following

(Fossum and Levy, 2012), eye fixation and reading

times are log-transformed to produce more nor-

mally distributed data.8 We include the follow-

7Exponentiating this value gives the perplexity score.
8For the Dundee corpus, we use the first-pass reading

time.

ing common predictors as fixed effects for each

word/participant pair: (i) position of the word in

the sentence, (ii) the number of characters in the

word, (iii) whether the previous word was fixated,

(iv) whether the next word was fixated, and (v) the

log of the word unigram probability.9

All fixed effects were centered to reduce

collinearity. We include by-word and by-subject

intercepts as random effects. The base model re-

sults reported below include only these fixed and

random factors. To test the ability of our three

theoretical models of computation and storage to

explain the reading time data, we include surprisal

predictions from each model as an additional fixed

effect. To test the signficance of these results, we

perform nested model comparisons with χ2 tests.

5.3 Results

For the likelihood evaluation, the values in Table 2

demonstrate that the FG model provides the best

fit to the data. The results also indicate a ranking

over the three models, FG ≻ DMPCFG ≻ MAG.

Dundee MIT

DMPCFG -6.82 -6.80

MAG -6.91 -6.95

FG -6.35 -6.35

Table 2: Likelihood Evaluation – the average

negative suprirsal values given by each model

(DMPCFG, MAG, FG) on all words in each cor-

pus (Dundee, MIT).

For the psychological evaluation, we present re-

sults of our nested model comparisons under two

settings: (a) additive in which we independently

add each of the surprisal measures to the base

model and (b) subtractive, in which we take the

full model consisting of all the surprisal measures

and independently remove one surprisal measure

each time.

Results of the additive setting are shown in Ta-

ble 3, demonstrating the same trend as observed

in the likelihood evaluation. In particular, the FG

model yields the best improvement in terms of

model fit as captured by the χ2(1) statistics, indi-

cating that it is more explanatory of reaction times

when added to the base model as compared to the

DMPCFG and the MAG predictions. The ranking

9The unigram probability was estimated from the WSJ
training data, the written text portion of the BNC corpus, and
the Brown corpus. We make use of the SRILM toolkit (Stol-
cke, 2002) for such estimation.



is also consistent with the likelihood results: FG

≻ DMPCFG ≻ MAG.

Models
Dundee MIT

χ2(1) p χ2(1) p

base+DMPCFG 70.9 < 2.2E-16 38.5 5.59E-10

base+MAG 10.9 9.63E-04 0.1 7.52E-01

base+FG 118.3 < 2.2E-16 62.5 2.63E-15

Table 3: Psychological accuracy, additive tests –

χ2(1) and p values achieved by performing nested

model analysis between the models base+X and

the base model.

For the subtractive setting, results in Table 4

highlight the fact that several models significantly

(p < 0.01) explains variance in fixation times

above and beyond the other surprisal-based pre-

dictors. The FG measure proves to be the most

influential predictor (with χ2(1) = 62.5 for the

Dundee corpus and 42.9 for the MIT corpus). Ad-

ditionally, we observe that DMPCFG does not sig-

nificantly explain more variance over the other

predictors. This, we believe, is partly due to the

presence of the FG model, which captures much

of the same structure as the DMPCFG model.

Models
Dundee MIT

χ2(1) p χ2(1) p

full-DMPCFG 4.0 4.65E-02 3.5 6.18E-02

full-MAG 14.3 1.58E-04 23.6 1.21E-06

full-FG 62.5 2.66E-15 42.9 5.88E-11

Table 4: Psychological accuracy, subtractive

test – χ2(1) and p values achieved by performing

nested model analysis between the models full-X

and the full model.

Additionally, we examine the coefficients of the

surprisal predictions of each model. We extracted

coefficients for individual surprisal measures in-

dependently from each of the models base+X. As

shown in the columns Indep in Table 5, all coef-

ficients are positive, implying, sensibly, that the

more surprising a word, the longer time it takes to

process that word.

Moreover, when all surprisal measures appear

together in the same full model (columns Joint),

we observe a consistent trend that the coefficients

for DMPCFG and FG are positive, whereas that of

the MAG is negative.

5.4 Discussion

Our results above indicate that the inference-based

model provides the best account of our test data,

Models
Dundee MIT

Indep. Joint Indep. Joint

DMPCFG 5.94E-03 1.95E-03 8.08E-03 3.24E-03

MAG 1.00E-03 -1.41E-03 1.54E-04 -2.82E-03

FG 5.13E-03 5.49E-03 5.88E-03 6.97E-03

Table 5: Mixed-effects coefficients – the Indep.

columns refer to the coefficients learned by the

mixed-effects models base+X (one surprisal mea-

sure per model), whereas the Joint columns refer

to coefficients of all surprisal measures within the

full model.

both in terms of the likelihood it assigns to the

test corpora and in terms of its ability to explain

human fixation times. With respect to the full-

parsing model this result is unsurprising. It is

widely known that the conditional independence

assumptions of PCFGs make them poor models

of syntactic structure, and thus—presumably—of

human sentence processing. Other recent work

has shown that reasonable (though not state-of-

the-art) parsing results can be achieved using mod-

els which relax the conditional independence as-

sumptions of PCFGs by employing inventories of

stored tree-fragments (i.e., tree-substitution gram-

mars) similar to the fragment grammars model

(De Marcken, 1996; Bod et al., 2003; Cohn et al.,

2010; Post and Gildea, 2013; O’Donnell, 2015).

The comparison with the full-listing model is

more interesting. Not only does the full-listing

model produce the worst performance of the three

models in both corpora and for both evaluations, it

actually produces negative correlations with read-

ing times. We believe this result is indicative of a

simple fact: while it has become clear that there

is lexical storage of many syntactic constructions,

and—in fact—the degree of storage may be con-

siderably more than previously believed (Trem-

blay and Baayen, 2010; Bannard and Matthews,

2008)—syntax is still a domain which is mostly

compositional. The full-listing model overfits,

leading to nonsensical reading time predictions.

In fact, this is likely a logical necessity—the vast

combinatorial power implicit in natural language

syntax means that even for a system with tremen-

dous memory capacity, only a small fraction of po-

tential structures can be stored.

6 Conclusion

In this paper, we have studied the ability of sev-

eral models of computation and storage to explain



human sentence processing, demonstrating that a

model which treates the problem as a case-by-case

probabilistic inference provides the best fit to read-

ing time datasets, when compared to two “limit-

ing case” models which always compute or always

store. However, as we emphasized in the introduc-

tion we see our contribution as primarily method-

ological. None of the models studied here repre-

sent state-of-the-art proposals for syntactic struc-

ture. Instead, we see these results together with the

tools that we make available to the community, as

providing a springboard for later research that will

isolate exactly which factors, alone or in concert,

best explain human sentence processing.
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