Who Should | Cite?
Learning Literature Search Models from Citation Behavior

Steven Bethard
Stanford University
353 Serra Mall
Stanford, CA, USA
bethard@stanford.edu

ABSTRACT

Scientists depend on literature search to find prior work that
is relevant to their research ideas. We introduce a retrieval
model for literature search that incorporates a wide variety
of factors important to researchers, and learns the weights of
each of these factors by observing citation patterns. We in-
troduce features like topical similarity and author behavioral
patterns, and combine these with features from related work
like citation count and recency of publication. We present
an iterative process for learning weights for these features
that alternates between retrieving articles with the current
retrieval model, and updating model weights by training a
supervised classifier on these articles. We propose a new
task for evaluating the resulting retrieval models, where the
retrieval system takes only an abstract as its input and must
produce as output the list of references at the end of the
abstract’s article. We evaluate our model on a collection
of journal, conference and workshop articles from the ACL
Anthology Reference Corpus. Our model achieves a mean
average precision of 28.7, a 12.8 point improvement over a
term similarity baseline, and a significant improvement both
over models using only features from related work and over
models without our iterative learning.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Retrieval models; 1.2.7 [Artificial
Intelligence|: Natural Language Processing; 1.5.4 [Pattern
Recognition]: Applications—Text Processing

General Terms
Algorithms

Keywords

literature search, retrieval models, citation patterns, author
behavior, topic models

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CIKM’10, October 26-30, 2010, Toronto, Ontario, Canada.

Copyright 2010 ACM 978-1-4503-0099-5/10/10 ...$10.00.

Dan Jurafsky
Stanford University
450 Serra Mall

_ Stanford, CA, USA
jurafsky@stanford.edu

1. INTRODUCTION

Effective scientific research requires keeping up with a
large, ever-growing body of literature. A researcher that
comes up with a seemingly novel project idea that is outside
their area of expertise will often find it difficult to determine
whether that research has already been done, and what prior
research in the field is most relevant. The advent of search
engines has made this task somewhat easier, but scientific
article search is often still a complex process that alternates
between guessing “good” keywords for a search engine, and
looking at articles citing and cited by the retrieved articles.

One of the reasons for this iterative process is that tradi-
tional information retrieval relies primarily on keywords for
matching queries to documents. Search engines may include
some analysis of links between webpages, but this is less effec-
tive for scientific articles which are often in link-less formats
like PDF. Moreover, the relevance of a scientific article to
a particular project idea often cannot be characterized by
keyword matching alone, and must consider other factors
like citation patterns, co-authorship networks and subject
area matching.

We believe that the complexity of scientific literature search
can be reduced by building a retrieval model that integrates
the features of classic keyword search with features important
to scientific literature retrieval, such as the citation network,
the recency of publication, the topical similarity of articles,
and some understanding of the role social networks play. We
introduce a number of such features, and show how they can
be integrated in a simple retrieval model whose weights can
be learned effectively using an iterative training algorithm.

Ideally, such a system would be trained on a set of short
project descriptions and lists of articles relevant to each.
Because no such data is readily available, in this article we
use the following proxy: we treat the abstract of an article
as the project idea, and the list of references at the end
as the relevant articles. We then build a retrieval system
that takes abstracts as inputs and produces reference lists as
output. Using this proxy makes the task somewhat harder
— because researchers generally read more than just what is
in the references list, and thus some relevant articles will be
missing — but we believe it is a good approximation, and it
is easy to collect such data from existing citation databases.

The rest of this article explains our approach to citation
retrieval. We first describe related work, and explain our
formulation of the task. Then we introduce the new fea-
tures we have developed, and our algorithm for training a
retrieval model. The model is then evaluated on the ACL
Anthology, and we analyze the effects of classifier choices,

the effectiveness of multiple training iterations, the impor-
tance of different features, and some sociological implications.
Finally, we discuss some avenues for future research.

2. RELATED WORK

Early research found that augmenting keyword search with
some knowledge of citations had potential for improving lit-
erature search. Pao [21] ran a case study where medical
professionals gave a description of a topic of interest and an
example article, and librarians searched using both keywords
and citations. Pao found that searching by citations added
an extra 24% relevant articles not found by keyword search.
Larsen [9] later tried to automate something like this pro-
cess, retrieving articles by keywords and then following their
citations to retrieve additional articles. However, on queries
over IEEE Computer Society journals, an implementation
of this approach by Larsen and Ingwersen performed worse
than a traditional term based retrieval system [10].

One of the difficulties with the Larsen and Ingwersen
approach was that it treated keyword and citation search as
independent processes. Models that integrate the two have
seen some gains in retrieval quality. For example, Meij and
de Rijke [15] worked with queries generated by biologists
against the MEDLINE database, and found that boosting
documents based on the number of times they were cited
provided absolute gains of up to 2.5 percentage points in
mean average precision. Similarly, in a patent retrieval task
where a patent application was the query and the expected
results were the reason for that application’s rejection, Fujii
[6] found an absolute gain of 0.4 percentage points in mean
average precision by boosting documents based on their
PageRank score [20].

Another way researchers have integrated citation and key-
word information is through citing snippets, the bits of text
near where an article is cited. Bradshaw [3] found that on
Citeseer articles that were cited at least once, a model that
indexed only the citing snippets for each article outperformed
a model that indexed the article texts. Similarly, using au-
thor generated research questions as queries against the ACL
Anthology, Ritchie et al. [24] found that concatenating the
citing snippets with the article text led to absolute gains of up
to 6.8 percentage points in mean average precision. Ritchie
also showed that exact snippet boundaries were unimportant
— even just the 100 words around the citation was effective.

Recent work has looked at feature-based models where
keyword, citation, and other kinds of information can be
assigned different weights and integrated into a single scoring
function. Tbahriti et al. [28] developed a classifier for seg-
menting MEDLINE abstracts into purpose, methods, results
and conclusion sections, and built a model with a feature for
each section. In a task where the title, abstract and MeSH
terms of an article were used as the query and the reference
list was the expected result, manually boosting the purpose
and conclusion features led to an absolute improvement of
0.8 percentage points in mean average precision.

Strohman et al. [26] explored additional features in a task
where an entire document was the query and the document
reference lists were the expected results. They first employed
one iteration of a Larsen and Ingwersen-like system, retriev-
ing 100 results by terms alone, and then adding in all papers
they cited. Then they re-ranked all of the retrieved articles
using features like the year in which they were published,
the citation count, authors in common with the query and a

measure of distance through the citation graph. Weights for
these features were learned using coordinate ascent, and their
model achieved an absolute gain of 9.4 percentage points in
mean average precision over a simple term-based baseline.

Our work improves upon this prior work in several ways.
We first propose a more realistic task to represent a researcher
investigating a new project idea, where only the title and
abstract of the paper are given, rather than assuming the
author has already written the entire article or assigned
terms from a controlled vocabulary. Next, we introduce a
wide variety of new features for citation retrieval, drawing
from research in both bibliometrics and statistical topic
modeling, to construct useful features that were previously
unexplored for this task. Finally, we construct a new model
for combining the various features, and demonstrate that an
iterative paradigm for learning model weights outperforms
the single-iteration training typical of prior work.

3. FEATURES

At its core, our retrieval model scores each document
(article) d against the query (project idea) ¢ using a weighted
sum of feature scores:

score(q,d) = sz X fi(q,d)

The features represent facts about the article that might
make it worth citing. For example, in addition to finding
articles with similar terms, it would also be helpful to know
if the article was frequently cited, if it is old or new, or if
it pertains to similar topics or subject areas. It would also
be good to understand the social reasons that people cite —
articles from more prestigious authors or venues might be
preferred over others. The following sections describe the
scoring functions we introduced to characterize such features.

3.1 Similar Terms

Despite our complaints about the inadequacy of current
search engines for literature search, there is no doubt that
looking for similar terms is a great place to start. Thus, we
include the classic TF-IDF term scoring from information
retrieval, which represents both the query and the document
as a vector of word counts [13, pages 107-116]. We use the
Lucene 3.0.0 default implementation of TF-IDF, whose full
calculation covers several pages of Java documentation®, but
at its core looks basically like:

tf(¢,d) = |{t' € terms(d) : t' = t}|

D]
{d € D :t € terms(d)}| + 1

idf(d) = 1 +log

SCOreserms(q, d) = z tf(t, d)® - idf(d)? . ..

teq

This score increases when terms (t) are shared between the
query (¢) and the document (d), but terms that appear in
many documents in the collection (D), such as the, are heavily
discounted. The Lucene additions to this calculation do other
useful things like normalizing for query and document length,
making query scores comparable, etc.

"http://lucene.apache.org/java/3_0_0/api/all/org/
apache/lucene/search/Similarity.html

3.2 Cited by Others

Most search engines incorporate site popularity by boost-
ing webpages that are linked to by many other pages. We
introduce features that encode scientific article popularity by
inspecting the network of article citations. The first feature
boosts articles by their citation count, i.e. the number of
times the article was cited:

citing(d) = {d’ € D : d'cites d}

SCOI'€citation-count (Q» d) - |Clt1ng(d)|

The second feature boosts articles by their PageRank [20]
score, but calculated over the citation network instead of the
hyperlink network (similar in spirit to what was suggested
by Pinski and Narin [22]):

SCOT€pagerank (qa d) =

1—=x
|D\ +x Z

d’ eciting(d)

SCOT€pagerank (q7 d/)
@ € D: dcites d7]]

The intuition behind PageRank is that articles cited by
many articles who are in turn cited by many articles, are
good candidates to propose to a user. Thus, PageRank is
a recursive scoring function that calculates the popularity
of an article by summing the PageRank scores of all articles
that cite the original one, and normalizing by the number of
items each such article cites. The damping factor (x in the
formula above) is a parameter that determines how much of
the PageRank of an article can be modified by the articles
that cite it. We initialize all article scores uniformly, set the
damping factor to 0.85 and run 100 iterations of PageRank to
determine the final article scores. These parameter settings
were taken from [4] and [20].

It is also possible to characterize an article based on how
often its authors or venue have been cited. Such statistics are
common in bibliometric analyses of author and venue impact,
but have not to our knowledge been used for information
retrieval. We add a feature to boost articles by the citation
count of their venue, similar to the impact factor of [7]:

s 7
SCOI'€venue-citation-count (q, d) = E |Clt1ng(d)|
d’€D: venue(d’')=venue(d)

We also add a feature to boost articles by the maximum
citation count of their authors:

Scoreauthor-citation—count(Q7 d) -

max Z |citing(d")]

a€authors(d)
d’e€D: a€cauthors(d’)

As a variant of the latter, we also add a feature to boost
articles by the maximum h-Index [8] of their authors. An
author with an h-Index of h has published h papers each of
which has been cited by others at least h times.

Scoreauthor—h-indcx(q7 d) = max h'IndeX(a)

a€authors(d)

All of these features in some way measure the past popularity
of an article, something we expect to be a strong predictor
of future citation.

3.3 Recency

Researchers often want the most recent articles on a topic,
thus a measure of the age of an article is important. We

include as a feature the number of years since the article was
published:

scoreage (g, d) = year(q) — year(d)

We expect a negative weight on this feature — the older an
article, the less likely it will be cited.

3.4 Cited Using Similar Terms

Search engines often include with the text of an indexed
article the anchor text of all the links into that article [14].
The prior work on citing snippets is an extension of this idea
to scientific articles, and has been used for both retrieval
[3, 24] and summarization [17]. However, instead of concate-
nating the text and the citing snippets together as has been
done in previous work, we introduce separate features for the
text and the citing text so that our model can learn separate
weights for each.

In our corpus, citing snippets are not immediately available
— we only know that article A cites article B, not where in
the text of article A the citation occurs. It might be possible
to design patterns or a classifier to identify these citation
locations, but we opt for a simpler approach that relies only
on the text. We add a feature that compares the query terms
to all the terms from all the citing articles, using the TF-IDF
scoring described previously:

SCOT€terms-citing (¢, d) = SCOT€terms | ¢, concat (terms d

v ¢ g(q) v (q d’Eciting(d)(()))
We also introduce a feature that tries to select important
citing terms using pointwise mutual information (PMI). We
look for words (and bigrams) that are used to cite an article
more often than we would expect by chance:

Prermciting (£, d)
Perm () Peiting (d)
We calculate the probability of a term ¢, of citing an article
d, and of a term t being used when citing an article d by

counting occurrences of terms and citations in our training
corpus (bigrams are counted similarly):

S {t € terms(d') 1 ' =t}

pmi(t,d) = log

» (t) = d'eD
term Z |terms(d’)\
d'eD
|citing(d)|
citing(d) = =7
Peiting () > |citing(d")]
d'eD

S |t € terms(d) i t' =t}

d’ eciting(d)

ermcitin, t7d =
Prermeiting(*, d) [terms(d)]

d’’ €D d’€citing(d’’)

The intuition here is that words and bigrams with high PMI
scores should be the terms people use when citing that article.
For efficiency reasons — pairing all terms with all articles
produces a very large number of pairs — we only generate
PMI scores for articles that are cited at least five times and
terms that occur at least twice in some citing article.

To create a feature from this information, we select the
1000 terms and bigrams that have the highest PMI with each
article?, and concatenate these into a pseudo-document we

2The number 1000 was selected on the development data,
though the model did not seem to be very sensitive to the
exact value chosen.

Topic 05 prosodic speech syllable phonological stress
Topic 11 alignment translation statistical alignments
Topic 12 resolution antecedent pronoun anaphora
Topic 38 frame semantic argument role arguments
Topic 48 event temporal time events tense

Topic 63 parsing parser grammar parse chart
Table 1: Top words from selected LDA topics.

call textpmi. We then use TF-IDF scoring to compare the
query against this pseudo-document:

SCOT€terms-pmi (‘L d) = SCOr'€terms (Q7 tetimi (d))

Note that the textpmi pseudo-document is just a subset of
the terms used by the scoreterms-citing feature, but it offers
the potential advantage that the terms are more targeted to
the citation retrieval task.

3.5 Similar Topics

Finding relevant articles also means constraining the search
to a relatively small number of subject areas. The terms in an
article may hint at such topic distinctions, but it may also be

useful to have a more explicit representation of these topics.

Our corpus does not provide manually annotated subject
headings, so we instead rely on statistical topic models to
infer a reasonable set of topics. We selected latent Dirichlet
allocation [2] to infer topics for our corpus as it been applied
successfully to many tasks, and implementations are freely
available®. We trained a 100 topic model on our corpus — the
top words for a few of the topics are shown in Table 1.

These topics will form the basis for a number of different
features introduced below. While various work in topic
modeling has considered the interaction between topics and
citation, e.g. [16, 18, 27], to our knowledge, this is the first
time features based on topic models have been integrated
into a literature retrieval system.

All of our topic features work by inspecting the probability
distribution over topics assigned to a text. That is, for each of
our N = 100 topics, our topic model predicts piopics (i, d), the
inferred probability of topic ¢ in document d. The distribution
over all topics in document d is then:

topics(d) = {propics(1, d), Propics(2, d), - . . , Deopics (N, d) }

Note that latent Dirichlet allocation infers document topics
in such a way that the above truly is a distribution — i.e. it
will sum to 1. We use these topic distributions in some of
the same ways we used the TF-IDF term vectors.

Our first topic-based feature uses cosine similarity® to
compare the topic distribution assigned to the project idea
with the topic distribution assigned to the article:

SCOTetopics (¢, d) = cos(topics(q), topics(d))

Like the term similarity feature, we are converting text into
vectors and comparing them with a cosine. The difference is
that the vectors here represent topic distributions instead of
TF-IDF word counts.

3We use Stanford TMT (http://nlp.stanford.edu/software/
tmt/), with default settings for all model parameters.

“We also tried Kullback-Leibler divergence and Jensen-
Shannon divergence, but cosine outperformed both of these
on the development set.

As an analog to the scoreterms-citing feature, we also intro-
duce a feature comparing the query to the citing articles.
First, we calculate the mean of the topic distributions of all
the citing articles:

> topics(d’)
d’ eciting(d)

ton
opies |citing(d)|

d) =

citing(

Then we compare the query topic distribution with this
mean-citing-topic distribution:

SCOT€topics-citing (¢, d) = cos(topics(q), tOPiCsying ()

A high scoreiopics-citing means that others with topically simi-
lar projects have also cited this article.

Sometimes it may make sense to focus on the single most
prominent topic. For example, if most semantic role labeling
papers cite the Penn Treebank, then we should recommend
that article for any semantic role labeling abstract. Thus we
introduce the idea of topic citation count, where we represent
each article by its most prominent topic, consider the articles
it cites to be cited by this topic, and calculate for all articles
the number of times they were cited by each topic. This
results in 100 citation counts for each article, one for each
topic. Our feature then boosts all articles by their citation
count for the query’s most prominent topic:

toptopic(d) = arg%axptopics(i, d)
i=1

SCOI'€topic-citation-count (q, d) =
|{d" € citing(d) : toptopic(d’) = toptopic(q)}|

We can also get a notion of the breadth or depth of an article
from its topics. This is important for identifying methodology
papers, which are often cited by a wider topical range of
articles. To measure the topical breadth of an article, we
calculate the entropy of the article’s topic distribution:

N
Scoretopic-entropy(q7 d) :prtopics (7/7 d) 10g Ptopics (74, d)
=1
To measure how broad an audience the article has reached,

we calculate the entropy of the article’s mean citing topic
distribution®:

SCOI'€topic-entropy-citing (q, d) =
N
Z —Ptopicsgiging (iv d) log Ptopicsciging (iv d)
i=1
Overall, we expect these topic-based features to better char-
acterize the influences of subject areas on citation patterns.
Such influences should be easier to identify with topics than
they would have been using purely term based features.

3.6 Social Habits

In addition to the primarily content-based features dis-
cussed above, there are social factors that influence what
articles an author considers relevant. We include the self-
citation feature from prior work which indicates when an
author prefers papers they have written themselves:

SCOT€authors (¢, d) = SCOTeterms (authors(q), authors(d))

5This feature is calculated in roughly the same way as topic
diversity, introduced in Mann et al. [12].

Note that authors(x) here just consults the article metadata,
and returns the authors as a list of terms. We can thus apply
the default TF-IDF scoring of scoreterms over these author
name-term vectors in the same way we did for regular term
vectors.

We also introduce new author-based features that consider
the past experience of an author and capture their preferences
for articles, authors and venues. The first such feature boosts
articles that have been previously cited by the query authors:

Scoreauthorsfcitedfarticle(Q7 d) =

concat (authors(d’)))
d’ €citing(d)

scoregerms (authors(q),

The next feature boosts articles written by people that the
query authors have previously cited:

Scoreauthors-cited-author((L d) -
1
concat (authors(d”)))
d’’ eciting(d’):
d’ € DAauthors(d’)Nauthors(d)#0

SCOreterms (authors(q),

We also boost articles published at venues that the query
authors have previously cited:

SCOr€authors-cited-venue (q; d) =
!
concat (authors(d')))
d"’ €citing(d’):
d’ € DAvenue(d’)=venue(d)

scoregerms (authors(q),

Finally, we boost articles written by people with whom the
query authors have co-authored:

SCOr€authors-coauthored (qa d) =

SCOreserms (authors(q),

concat (authors(d’) — authors(d)))
d’ € D:authors(d’)Nauthors(d)#0

All these features try to tailor the retrieval to match the past
behavior of an author. Of course, for authors that have never
been seen before, these features will not add any information.

4. RETRIEVAL MODEL

We combine all these features into a scoring function
that ranks the retrieved articles. Our model is essentially a
weighted sum of feature scores:

score(q,d) = sz’ x fi(q,d)

where ¢ is the query abstract, d is the potentially relevant
article, w; are the feature weights and f; are the feature
scores.

Both to make it easier to interpret the feature weights,
and because in experiments on the development set we found
it increased performance, we perform some normalization of
the feature scores. First, we put all features into log-space
to better cope with features like citation count where the
difference between 1 and 5 citations is more important than
the difference between 201 and 205:

fi(d, q) = scale;(log(1 + score;(d, q)))

Then, we scale these log-space feature scores to the interval
[0,1] based on the maximum and minimum values of f;

Algorithm 1 Iterative weight learning

procedure LEARN(train articles 7', dev articles D, hits N)
Wterms = 1.0
for i : i # terms do
w; = 0.0
data = ||
repeat
model <~ BUILDRETRIEVALMODEL(w)
map < MEANAVGPREC(model, D, N)
data < data + TRAININGDATA(model, T, N)
classifier <— LEARNCLASSIFIER(data)
w + WEIGHTS(classifier)
until map converges

procedure TRAININGDATA(model m, articles T, hits N)
data = ||
for d €T do
q <+ TERMS(TITLE(d)) + TERMS(ABSTRACT(d))
for d' € Retrieve(m, q, N) do
if d’ € CitedArticles(d) then

label < +1
else
label < —1

data + data + (label, FEATURES(q, d))
return data

observed in the training data:

S — min;

scale;(s) = ————
max; — min;

If the value in the test data is below 0 or above 1, we clip it

to the endpoint. This simple zero-one scaling often performs

as well as more elaborate schemes [29].

To learn the feature weights of our model, we train classi-
fiers based on the iterative process shown in Figure 1. First,
we run the baseline (terms-only) retrieval model, collecting
N articles for each abstract. Retrieved articles that are also
found in the abstract’s reference list are labeled +1, and the
other retrieved articles are labeled —1. A linear classifier is
then trained on this data, using the same features as the
retrieval model. Since the model is linear, when training is
complete, we can read the feature weights off the classifier
and insert them directly into the retrieval model. The same
process can be repeated with the updated retrieval model to
collect another set of retrieval lists, add these to the training
data and train a new classifier. The process continues until
the model mean average precision on the development set
converges or a set number of iterations is reached.

The key point of this process is that since the model weights
are being updated on each iteration, the retrieval model is
typically adding some new examples to the training set on
each iteration®. We do not remove duplicates, so at iteration
k, there are kN items in the training data. Of course, if the
number of items in the training data were all that mattered,
we could simply set N to kN from the beginning (e.g. retrieve
2000 results per article once instead of retrieving 100 results
per article 20 times). This is the normal approach that has
been taken in prior work. However, intuitively the iterative

SThis iterative selection of training examples is similar in
spirit to the Minimum Error Rate Training (MERT) method
used in machine translation [19].

Venue Papers Years

CL (Journal) 535 1979-2005
COLING 2181 1965-2004
ACL 2140 1979-2007
HLT 940 1986-2005
EACL 588 1983-2006
NAACL 387 2001-2007
ANLP 335 1983-2000
MUC 182 1991-1998
IJCNLP 143 2005-2005
TINLAP 119 1975-1987
TIPSTER 114 1993-1998
Workshops 3270 1990-2007

Table 2: Venues in the ACL Anthology

approach is adding articles that the model wrongly thinks are
relevant and needs to learn are not, while the non-iterative
approach is adding more irrelevant results from the tail of
the retrieval. Thus we expect that the iterative approach
will learn better retrieval models.

We considered two types of classifiers for the weight learn-
ing step: a logistic classifier trained with a quadratic prior
(0 = 1.0) using L-BFGS [11], and an SVM-MAP [30] classi-
fier which trains a support vector machine (SVM) to opti-
mize mean average precision (MAP). Note that the logistic
classifier is optimizing only to the +1/-1 labels, while the
SVM-MAP classifier considers the order in which articles are
retrieved and optimizes directly to the MAP. Thus, we expect
the SVM-MAP classifier to learn more appropriate weights
to our task. We also observed in early experiments that the
logistic classifier had difficulty with the skew in the retrieved
data (many more non-relevant than relevant articles), so we
also considered a variant of the logistic classifier training
in which we downsampled the negative examples for each
article to match the number of positive examples.

S. EXPERIMENTS

We evaluated our literature search models on the ACL
Anthology Reference Corpus (ACL-ARC) [1], a set of 10,921
papers from computational linguistics workshops, conferences
and journals, summarized in Table 2. For each article, the
full text is available, as is metadata containing normalized
author names, venues, titles and citation information.

For our retrieval experiments, we constructed a query by
concatenating an article’s title and abstract, had our retrieval
model find relevant articles for this query, and compared
the results against the references list of the query article.
Abstracts were not annotated in the data, so we extracted
them using a set of manually constructed patterns. For the
reference lists, we discarded references to articles outside of
the corpus, and only considered articles that had at least five
references remaining. Table 3 shows the sizes of our training,
development and test sets.

Note that for all training and evaluation, we only used
features calculated over previous years. For example, when
retrieving articles for the abstracts published in 2004, all the
articles up through 2003 were indexed, and only the titles,
abstracts, and authors of the articles from the year 2004 were
available (as the queries). Thus, time dependent features
like citation count would only include citations from papers

Train Dev Test

Years 2000-2003 2004 2005-2006
Articles 613 319 794
References 5027 2600 7020
Refs/Article 8.2 8.2 8.8

Table 3: Training, development and test data from
the ACL Anthology Reference Corpus.

N=100 N =2000
Classifier 1iter 20 iter 1 iter
Logistic 7.9 16.8 10.7
Logistic 50/50 19.9 24.9 25.7
SVM-MAP 25.3 27.9 25.5

Table 4: Mean average precision on the development
data using different classifiers and all features. The
Logistic 50/50 model downsamples the number of
negative examples to match the number of positive
examples.

published in 2003 or earlier. Structuring the evaluation in
this way is more realistic — when presented with new project
ideas, a literature search system can only predict appropriate
references based on the patterns it has previously observed.

Given this setup, we applied our iterative training algo-
rithm to build a retrieval model. During learning, we re-
trieved 100 articles for each query, allowed the algorithm to
run for at most 20 iterations, and selected the model from the
iteration that achieved the highest MAP on the development
set. The SVM C parameter was set by learning a model for
each C value of 1, 10, 100, 1000 and 10000, and selecting
the C value with the highest MAP on the development set.
Typically either C' = 1000 or C' = 10000 was selected.

We evaluate the models using mean average precision
(MAP), which gives the highest score when all relevant arti-
cles precede all non-relevant articles in the retrieval results.
MAP is defined in terms of precision and average precision.
Precision determines what percent of the list of retrieved
results (D) were also in the list of relevant articles (R):

|[RN D|
|D|

Average precision calculates precision at each point where a
relevant article was found:

precision(R, D) =

precision(R, Dyy.;))

|R|

Mean average precision is then the average of all average
precisions across a set of test queries:

aveprec(R, D) = Z
i€[1,|D]: D;€R

Z aveprec(relevant(q), retrieved(q))

qeEQ

5.1 Classifier Analysis

Using these metrics, we first compared the effects of using
different classifiers to learn the model weights. As Table 4
shows, the SVM-MAP model outperformed both logistic
classifiers (p < .001)7, achieving a mean average precision

"We run a Student’s t-test and a Wilcoxon signed-rank test
over the paired per-document average precisions, and report
the most conservative p value.

Feature Dev MAP Test MAP
Only terms feature 15.4 15.9
Related work features 24.0 24.8
All features 27.9 28.7
All features (only 1 iteration) 25.3 26.9

Table 5: Mean average precision on the development
and test data using SVM-MAP with different fea-
ture sets.

of 27.9, compared to the 16.8 and 24.9 of the two logistic
classifier variants. Still, all classifiers improved (p < .001)
with our iterative learning procedure.

We also found that the iterative training procedure was
generally better than working with a larger number of ex-
amples from the start. We compared retrieving 100 training
examples on each of 20 iterations to retrieving the full 2000
training examples on a single iteration. As shown in the last
two columns of Table 4, for both the simple logistic classifier
and the SVM-MAP model, iterative learning outperformed
a larger retrieval size (p < .001). For the downsampling
logistic classifier, the larger retrieval size was slightly better
than iteration (p = .03), though still worse (p < 0.001) than
the iterative SVM-MAP model.

5.2 Feature Analysis

Thus, we selected the iterative SVM-MAP model to eval-
uate on our test set. Table 5 compares our model against
two baselines. The first baseline uses only the terms feature,
and is equivalent to downloading Lucene and using it out of
the box. The second baseline is an approximation of prior
work and uses all of the features we collected from related
research: terms, citation-count, pagerank, age, terms-citing
and authors. Most related work was on different tasks, so
we were unable to compare directly, but these features cover
most of what previous research has tried, so we believe this
model is a reasonable approximation. Our model outperforms
(p < 0.001) both of these baselines, achieving a MAP of 28.7
—a 12.8 point increase over the term similarity baseline, and
a 3.9 point increase over the related work baseline.

To get a better understanding of the influence of each
feature, we performed three analyses. First, we inspected
the feature weights themselves, since they were normalized
to the same range so as to be roughly comparable. Second,
we trained models with just the terms feature and a single
other feature to see how much of the MAP each feature could
produce on its own. Finally, we trained models with all
features except for one, and observed by the drop in MAP
how much the model depended on the missing feature.

Table 6 shows these analyses. 16 of our 18 features made
significant contributions to the model, either when added
to the terms model or when removed from the all-features
model. The best single features were terms-citing, terms-pms,
citation-count and topics-citing, suggesting that not only is
it crucial to include the number of times an article was cited,
but that combining this with the terms or topics from the
citing articles was particularly effective. Features whose
removal led to a significant drop in mean average precision
included citation-count, age and topic-entropy-citing. The
latter two are interesting because neither of these produced
significant increases when added to the baseline terms model.
The fact that their removal results in a significant decrease
suggests that these important features are inaccessible to the

Feature Weight Add Drop
terms (baseline) 1.67 0.0 -
citation-count 0.58 3.27%F 1.97
pagerank 0.06 0.27** 0.1
venue-citation-count 0.07 1.0"** 0.1
author-citation-count 0.11 1.07** -0.2
author-h-index -0.06 0.8"** -0.1
age -0.58 0.2 2.4
terms-citing 0.59 5.0"** 0.3
terms-pmi 0.13 3.7 0.2
topics 0.22 1.7 0.2
topics-citing 0.16 3.1 0.4
topic-citation-count 0.02 0.7 -0.1
topic-entropy -0.17 0.0 0.0
topic-entropy-citing -0.28 0.0 1.5
authors 0.68 1.1 0.3

authors-cited-article 0.68 1.77%* 0.2
authors-cited-author 0.21 1.0 0.5

authors-cited-venue 0.39 0.1 0.2
authors-coauthored 0.02 0.1 0.1
All features - 125 12.5

Table 6: Feature analysis: learned feature weight
(Weight), increase in MAP when added to the terms
model (Add), and decrease in MAP when dropped
from the all-features model (Drop). The top 5
weights are bold, and significant changes in MAP
are marked with ** (p < 0.01) or *** (p < 0.001).

many existing retrieval models that do not consider multiple
features at the same time.

Our feature analysis also gives some insight into sociolog-
ical phenomena. For example, the negative weight on the
topic-entropy-citing feature indicates that authors prefer to
cite papers that are of interest to a small number of fields,
not papers with broad impact across many fields. We also see
a high weight assigned to the self citation feature (authors),
suggesting that even after taking all our other features into
account, there is some benefit in assuming that authors will
favor their own papers. Note that this is not necessarily a
bad thing - self-citation is common across disciplines [25],
and actually has a positive correlation with citation by others
[5]. We also saw a trend for “favorite papers” in the highly
weighted authors-cited-article feature — authors like to cite
articles they have cited before.

5.3 Example Article

To give an idea of some of the issues our model still had
trouble with®, Table 7 shows the top eight results retrieved
for the article “Parsing Arguments Of Nominalizations In
English And Chinese”, on which our model had a number of
errors. The three articles marked with 4+ were present in the
reference list of the article, while the other five were not.

We gave the output of our system to one of the authors
of the article and asked for help in understanding why these
papers weren’t cited. Of the five errors, W03-1006 and
WO03-1008 are both correctly semantic role labeling papers,
but neither considers nominal predicates and are thus not
relevant. Fixing this error would probably require some
understanding that the primary contribution of the query ar-

8For a more hands-on analysis, a demo is also available at
http://nlp.stanford.edu:8080/citation-retrieval/

Use Of Deep Linguistic Features For The Recognition And Labeling Of Semantic Arguments

+ J02-3001 Automatic Labeling Of Semantic Roles

+ PO00-1065 Automatic Labeling Of Semantic Roles

- WO03-1007 Maximum Entropy Models For FrameNet Classification

4+ P03-1002 Using Predicate-Argument Structures For Information Extraction

- WO03-1006

- NO03-2008 A Maximum Entropy Approach To FrameNet Tagging

- WO03-1008 Identifying Semantic Roles Using Combinatory Categorial Grammar
- NO03-2022 Semantic Extraction With Wide-Coverage Lexical Resources

Table 7: Retrieved articles for “Parsing Arguments Of Nominalizations In English And Chinese”, by Sameer
S. Pradhan, Honglin Sun, Wayne H. Ward, James H. Martin and Daniel Jurafsky (N04-4036). A + indicates
that the article was found in the references list, a - indicates it was absent.

ticle is in parsing the arguments of nominalizations. Another
error, N03-2008, was a brief 4-page short paper that was ex-
panded later as W03-1007, a paper the system also suggested.
Suggesting both papers is an error that to fix would require
joint or global inference to reason that a workshop paper
is less relevant if the longer conference paper is cited. The
final two errors, W03-1007 and N03-2022, don’t deal with
nominalizations either, but since they both concern semantic
role labeling of FrameNet, the author told us that they were
considered for inclusion in the paper and omitted mainly for
space and also partly because they were less directly relevant
to nominalizations. These two out of our five errors were
thus at least appropriate suggestions.

6. CONCLUSION

We have presented a model for scientific article retrieval
that introduces new features and a new learning algorithm
that outperform previous approaches. Our model includes
many features previously absent from literature retrieval sys-
tems, such as author impact, author citation habits, topic
similarity and citing topic entropy, as well as useful features
gathered from related work, such as citation count, publi-
cation age and citing terms. We show that the weights for
these features can be more effectively learned by an itera-
tive training procedure which alternates between retrieving
articles with the current retrieval model, and updating the
retrieval model weights by training a classifier these articles.

We evaluated our model on the ACL Anthology Reference
Corpus, giving our system abstracts as input, and evaluating
it by how well it produced the reference lists of the correspond-
ing articles. Our model achieved a mean average precision of
28.7, significantly outperforming a term-similarity baseline, a
model using only features from prior work, and a model with
all features but trained in the non-iterative fashion typical of
prior work. Analyses of the model showed that augmenting
word-based features with topic and author-based features
allowed us to take advantage of interesting trends in scientific
citation, for example: authors cite themselves, authors cite
their favorite papers, and authors cite articles with narrow
impact to only a few related topic areas.

Our work offers a number of interesting directions for fu-
ture research. First, in this work we make the simplifying
assumption that the articles actually cited by a paper are the
same as the articles that should be cited for that paper. In
practice however, we observe that some unnecessary citations
are present and some appropriate citations are absent. It
would be interesting to re-evaluate our models using a collec-
tion like that of Ritchie et al. [23] which includes relevance
judgments for each article citation, where we would be able

to distinguish between important and unimportant articles
that our model failed to find. We would also like to run a
more extensive manual evaluation of our system to determine
how often relevant articles are being proposed but happen
not to be in the references list.

Work is also needed to determine whether the feature
weights and scientific trends we observed are specific to our
computational linguistics corpus or are indicators of more
general trends. Larger citation databases like Citeseer® or
ISI’s Web of Knowledge'® include articles from many more
domains, and the citation networks in such databases may
exhibit different structures than those observed in our corpus.
We could train our models on such corpora to see whether
the learned feature weights and interactions between features
follow the patterns observed here or reveal new trends in
scientific citation.

Perhaps the most interesting future direction is to investi-
gate how the disciplines of science differ from one another.
Thus, we are currently looking at methods for analyzing how
the importance of features changes across disciplines, e.g.
by learning a separate retrieval model for each subject area.
Can we characterize, for example, which disciplines rely more
heavily upon their personal social networks? Answering such
questions would advance our understanding of the scientific
process, and at the same time enable more personalized,
useful literature retrieval systems.

Acknowledgments

This material is based upon work supported by the National
Science Foundation under Grant No. 0835614. Thanks also
to the Office of the President, Stanford University, for partial
funding.

References

[1] S. Bird, R. Dale, B. J. Dorr, B. Gibson, M. Joseph,
M.-Y. Kan, D. Lee, B. Powley, D. R. Radev, and Y. F.
Tan. The ACL Anthology Reference Corpus: A refer-
ence dataset for bibliographic research in computational
linguistics. In Language Resources and Fvaluation Con-
ference, 2008.

[2] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet
allocation. Journal of Machine Learning Research, 3:
993-1022, Jan. 2003.

[3] S. Bradshaw. Reference directed indexing: Redeeming
relevance for subject search in citation indexes. In Re-

%http://citeseerx.ist.psu.edu
Ohttp: //wuw.isivebofknowledge . com/

[11]

[12]

[14]

[15]

[16]

search and Advanced Technology for Digital Libraries,
pages 499-510. Springer Berlin / Heidelberg, 2003.

S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. Computer Networks
and ISDN Systems, 30(1-7):107-117, 1998.

J. Fowler and D. Aksnes. Does self-citation pay? Scien-
tometrics, 72(3):427-437, 2007.

A. Fujii. Enhancing patent retrieval by citation analysis.
In Proceedings of the 30th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 793-794, 2007.

E. Garfield. Citation indexes to science: a new dimension
in documentation through association of ideas. Science,
122:108-111, 1955.

J. E. Hirsch. An index to quantify an individual’s sci-
entific research output. Proceedings of the National
Academy of Sciences of the United States of America,
102(46):16569-16572, Nov. 2005.

B. Larsen. Exploiting citation overlaps for information
retrieval: Generating a boomerang effect from the net-
work of scientific papers. Scientometrics, 54(2):155-178,
June 2002.

B. Larsen and P. Ingwersen. Using citations for ranking
in digital libraries. In JCDL ’06: Proceedings of the 6th
ACM/IEEE-CS Joint Conference on Digital Libraries,
pages 370-370, 2006.

D. C. Liu and J. Nocedal. On the limited memory
BFGS method for large scale optimization. Mathematical
Programming, 45(3):503-528, 1989.

G. S. Mann, D. Mimno, and A. McCallum. Bibliometric
impact measures leveraging topic analysis. In Proceed-
ings of the 6th ACM/IEEE-CS Joint Conference on
Digital Libraries, pages 65-74, 2006.

C. D. Manning, P. Raghavan, and H. Sch utze. Intro-
duction to Information Retrieval. Cambridge University
Press, 1 edition, July 2008.

O. A. McBryan. Genvl and wwww: Tools for taming the
web. In First International Conference on the World-
Wide Web, 1994.

E. Meij and M. de Rijke. Using prior information de-
rived from citations in literature search. In Recherche
d’Information AssistAle par Ordinateur (RIAO), 2007.

D. Mimno and A. McCallum. Topic models conditioned
on arbitrary features with dirichlet-multinomial regres-
sion. In Uncertainty in Artificial Intelligence, 2008.

S. Mohammad, B. Dorr, M. Egan, A. Hassan,
P. Muthukrishan, V. Qazvinian, D. Radev, and D. Za-
jic. Using citations to generate surveys of scientific
paradigms. In Proceedings of Human Language Tech-
nologies: The 2009 Annual Conference of the North
American Chapter of the Association for Computational
Linguistics, pages 584-592, 2009.

(18]

(19]

20]

(21]

(22]

23]

(24]

(25]

[26]

27]

28]

29]

(30]

R. M. Nallapati, A. Ahmed, E. P. Xing, and W. W.
Cohen. Joint latent topic models for text and citations.
In KDD ’08: Proceeding of the 14th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 542-550, 2008.

F. J. Och. Minimum error rate training in statistical
machine translation. In Proceedings of the 41st Annual
Meeting of the Association for Computational Linguis-
tics, pages 160-167, 2003.

L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical Report 1999-66, Stanford InfoLab, November
1999.

M. L. Pao. Term and citation retrieval: A field study.
Information Processing & Management, 29(1):95-112,
1993.

G. Pinski and F. Narin. Citation influence for jour-
nal aggregates of scientific publications: Theory, with
application to the literature of physics. Information
Processing and Management, 12(5):297-312, 1976.

A. Ritchie, S. Teufel, and S. Robertson. Creating a test
collection for citation-based ir experiments. In Proceed-
ings of the Human Language Technology Conference of
the NAACL, Main Conference, pages 391-398, 2006.

A. Ritchie, S. Robertson, and S. Teufel. Comparing
citation contexts for information retrieval. In Proceed-
ing of the 17th ACM Conference on Information and
Knowledge Management, pages 213-222, 2008.

H. Snyder and S. Bonzi. Patterns of self-citation across
disciplines (1980-1989). Journal of Information Science,
24(6):431-435, Dec. 1998.

T. Strohman, W. B. Croft, and D. Jensen. Recommend-
ing citations for academic papers. In Proceedings of
the 30th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval,
pages 705706, 2007.

J. Tang and J. Zhang. A discriminative approach to
Topic-Based citation recommendation. In Advances in
Knowledge Discovery and Data Mining, pages 572-579.
Springer Berlin / Heidelberg, 2009.

I. Thahriti, C. Chichester, F. Lisacek, and P. Ruch.
Using argumentation to retrieve articles with similar
citations: an inquiry into improving related articles
search in the MEDLINE digital library. International
Journal of Medical Informatics, 75(6):488-495, June
2006. ISSN 1386-5056.

S. Wu, F. Crestani, and Y. Bi. Evaluating score nor-
malization methods in data fusion. In Asia Information
Retrieval Symposium (AIRS), pages 642-648, 2006.

Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A sup-
port vector method for optimizing average precision. In
SIGIR ’07: Proceedings of the 30th Annual International
ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 271-278, 2007.

