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Abstract

The first indication of a new outbreak is often in un-
structured data (natural language) and reported openly
in traditional or social media as a new ‘flu-like’ or
‘malaria-like’ illness weeks or months before the new
pathogen is eventually isolated. We present a system for
tracking these early signals globally, using natural lan-
guage processing and crowdsourcing. By comparison,
search-log-based approaches, while innovative and in-
expensive, are often a trailing signal that follow open
reports in plain language. Concentrating on discovering
outbreak-related reports in big open data, we show how
crowdsourced workers can create near-real-time train-
ing data for adaptive active-learning models, addressing
the lack of broad coverage training data for tracking epi-
demics. This is well-suited to an outbreak information-
flow context, where sudden bursts of information about
new diseases/locations need to be manually processed
quickly at short notice.

Introduction
The world’s greatest loss of life is due to infectious diseases,
and yet people are often surprised to learn that no one is
tracking all the world’s outbreaks. We report on one of the
broadest investigations so far, utilizing crowdsourcing and
natural language processing to discover and structure infor-
mation about outbreaks globally (about 1 billion data points
per day).

There are many components to tracking outbreak reports:
filtering relevant from irrelevant information, structuring the
details of each report (eg: case counts), tracking any geo-
graphic movements, resolving duplicate or conflicting re-
ports, and, of course, coordinating the response. This pa-
per primarily focuses only on the first and (in terms of data)
largest: filtering the relevant information from the irrelevant
information, We make three main arguments:

1. Search-log-based detection methods likeGoogle Flu
Trends, while innovative and inexpensive, are a often trail-
ing signal that follow other reports that open to find (but
difficult to parse), but are still unsurpassed in the fully au-
tomated early prediction of seasonal epidemics.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2. Existing systems have made erroneous conclusions about
the correct machine-learning techniques to employ, pri-
marily due to lack of training data, and that crowdsourc-
ing is one way to overcome this.

3. Crowdsourcing is also suitable for scalable annotation
in active learning systems that need to quickly adapt to
changing information at large volumes, in scenarios like
when a new disease starts spreading through a new region.

Discovering outbreak-related information from among all
the world’s available data is a daunting task. 80% of the
world’s data is ‘unstructured’, or in other words, in plain
language. While the remaining 20% may be structured data,
there are often earlier signals in the 80%. This is true
for outbreaks: while agencies like theUS Center for Dis-
ease Control (CDC), theEuropean Center for Disease Con-
trol (ECDC), ProMed, and theWorld Health Organization
(WHO) publish structured data about outbreaks, it often fol-
lows reports about the same outbreak in plain language, from
the organizations themselves or from traditional and social
media.

Natural language is more difficult to parse than struc-
tured data, especially in situations like disease outbreaks
when the first report can be in any one of hundreds of lan-
guages. The system presented uses natural language pro-
cessing to seek outbreak-related information in hundreds of
thousands of sources in hundreds of languages, separating
relevant from irrelevant reports and creating structured data.
It passes low-confidence items (reports that are not clearly
outbreak-related, but not clearly irrelevant) to crowdsourced
workers for verification. The manually corrected annotations
are then added to the system and also to the training data in
order to create a near-real-time active learning loop. A small
number of reports, including persistent ambiguities, are an-
notated by in-house analysts. The in-house annotated exam-
ples also contribute to gold examples for the crowdsourced
workers, ensuring quality control.

We draw our data fromepidemicIQ, an outbreak tracking
system that has been running since May of 2011, investi-
gating a number of language processing strategies. This is
a snapshot of one strategy, with the core machine-learning
utilizing only the openStanford NLP natural language pro-
cessing software to ensure replicability of results.



Background and evaluation
For H5N1 (Bird Flu), the first reports of a new ‘flu-like ill-
ness’ were weeks before it was identified as a new virus and
isolated by virologists/epidemiologists. For H1N1 (Swine
Flu), it was months, with many early reports containing the
key signatures of a new and potentially deadly virus (for
example, being especially virulent among the young and
healthy). If these reports could have been put in front of the
right virologists or epidemiologists earlier, then we could
have halted the outbreak sooner. But even when these reports
appear in open social and traditional media, there is still the
needle-in-the-haystack problem in that most information in
the world isnot about outbreaks.

Large-scale surveillance is common for many potential
threats. NASA is tracking thousands of potentially danger-
ous near-Earth objects (NASA 2011) while national secu-
rity agencies are tracking tens of thousands of suspected ter-
rorists daily (Chertoff 2008). A deadly microbe is far more
likely to sneak onto a plane undetected.

Related work

There is very little prior work in using large scale natural
language processing for tracking outbreak-related informa-
tion (often called ‘biosurveillance’).

The largest organization that currently tracks outbreak-
related information is calledARGUS, with a primary report-
ing role to the US Government. They recently report using
Naive Bayes models to suggest candidate outbreak-related
articles for their in-house analysts (Torii et al. 2011). With
just 298 data points, they found no significant difference be-
tween Naive Bayes and linear-kernel Support Vector Ma-
chine models (a result we confirmed by analyzing similar
sized models with our own data). As the largest organization
with the most recent published work, it is the main system
to which we compare ours here.

To our best knowledge,ARGUS is the only organization
using natural language processing in combination with pro-
fessional analysts to process outbreak-related information at
a global scale. However, there are several other organiza-
tions that use rule-based approaches to keyword extraction,
often in combination with search engine APIs. A typical ap-
proach would be to use a search engine’s API and/or crawl
the web to find new news articles/reports with phrases like
“outbreak of ebola”. An example isHealthMap, who take
outbreak-information from outbreak-related feeds and com-
bine it with information found by using search APIs (Brown-
stein, Freifeld, and Madoff 2009).

At the least (technically) sophisticated end of the spec-
trum are simple aggregators. There are a number of orga-
nizations, like theWorld Health Organization (WHO) and
ProMed, that publish RSS feeds with content specifically re-
lating to outbreaks, and some organizations simply combine
information from these feeds. While a large amount of data
can be collected this way, these systems give the appearance
of being more automated than they really are: every article in
the outbreak-related feeds of theWHO andProMed has been
manually added by a person. They are, therefore, a trailing
signal. We don’t compare these systems directly to ours and

assume that they report subset of all the other systems re-
ported here. However, one output of the work described here
could be topopulate systems like these, either automated or
by providing high-confidence candidate reports for review
by their inhouse analysts.

All the methods above have one thing in common – they
are trailing signals. There is important information aboutpo-
tential outbreaks in open media well before it is manually
processed by aggregators (or aggregators of aggregators).

An innovative alternative for detecting outbreaks was dis-
covered by engineers atGoogle.org. By using econometrics
and a white-list of flu-related symptoms, they were able to
correlate people searching for those symptoms with later ac-
tivity of flu-like illness in the same region (Ginsberg et al.
2009). In some cases, they were able to find significant pre-
dictors for flu-activity several weeks in advance of theCDC
published data. It was ingenious in its simplicity: with access
to the search logs, a simple list of symptoms and some stan-
dard econometrics, they were able to establish a new method
for tracking diseases.

However, we will suggest search-logs-based economet-
rics do not detect the earliest signals and that the complex
social dynamics that determine when a person searches for
a given symptom may only produce a reliable signal in sea-
sonal epidemics.

Evaluation
We evaluate three dimensions of the problem of identify-
ing outbreak-related content in open intelligence: search-
log-based systems as an early signal; training-data size, with
a focus in how it relates to model selection; and active-
learning with a focus on the robustness of crowdsourcing
under high volume bursts.

Reinterpreting search-based approaches
Search-log-based approaches likeGoogle Flu Trends are a
form of crowdsourced epidemiology in themselves: large
numbers of individuals self-selecting to search for disease-
related terms online.

However, one ofCNN’s weather anchor can identify out-
breaks earlier than the combined forces of theCDC and
Google Flu Trends:

“I’m Jacqui Jeras with today’s cold and flu report ...
across the mid-Atlantic states, a little bit of an increase
here”, January 4, (Jeras 2008)

The flagship example forGoogle Flu Trends shows the
early prediction for flu-like activity in the mid-Atlantic
states.1 Google Flu Trends identified an increase in flu ac-
tivity on the 28th of January, a full two weeks ahead of the
CDC, but this was first noted onCNN more than three weeks
earlier than either (See Figure 1).

This particular example is selected because it was the ex-
ample singled out byGoogle Flu Trends and becauseCNN
are the largest traditional media outlet – there may well
have been earlier reports in more local and/or social media

1See http://www.google.org/flutrends/about/how.html, and the
video embedded within.



Figure 1: The timeline for when different organizations first publicized their knowledge about the increase in Flu in themid-
Atlantic US states in 2008. This particular case,Google Flu Trends precedes the CDC’s confirmed trends by two weeks, but it
is three weeksafter the increase was first noted on CNN. This pattern – a earlier plain language signal in open media – is found
for every Google Flu Trend prediction that we have investigated to-date. However, unlike search-log-based approaches, we can
not yet fully automate the accurate prediction of case counts from natural language processing.

sources. With bounded resources we have not been able to
confirm this pattern for every possible outbreak predicted by
search-log-based techniques, but we are yet to find an ex-
ception. We therefore leave a comprehensive comparison of
search-based and media-based epidemiology as future work.

With this new information, it looks like a common order
of events for search-log-based approaches is something like
this:
1. A flu-strain starts spreading through a region.
2. The increase is noticed first by people who observe large
parts of the community (eg teachers) and health care profes-
sionals.
3. Information about the increase is spread informally
through traditional and social media, and more formally
through official reporting channels.
4. People are more worried as a result of knowing that the
flu is spreading.
5. When early cold or flu symptoms appear, those more-
worried people are more likely to search for their symptoms
for fear that it is the worse of the two.
6. A signal appears via search-logs.
If this is the case – and it is our best explanation we have to-
date – then the first signal will typically be in plain language
with search-logs later reflecting the existing knowledge and
concerns of the population. For the creators ofGoogle Flu
Trends this is actually amore complex and interesting in-
teraction of social and technological systems than they first
theorized, but an inherently delayed one.

As Ginsberg et al. note, “the CDC publishes national and
regional data from these surveillance systems on a weekly
basis, typically with a 1-2-week reporting lag.” (Ginsberg
et al. 2009) The lag is from virological and clinical data,
including influenza-like illness (ILI) physician visits. To be
more precise, the delay in publication is from when theCDC
receives the information from these other parties (Step 3.
above). This is in addition to the time taken to get feedback
from virological and clinical data and ILI physician visits.
Given the chain of events we suggest above, there will be
contexts where an outbreak produces a signal in an organi-
zation like theCDC before it does in search-query logs.

This also gives a more detailed explanation for why
Google Flu Trends did not as accurately model the recent
Swine Flu outbreak. The creators point out that there were
few cases of Swine Flu in the US and thatGoogle Flu Trends
was designed for large-scale trends (Cohen ). The substantial

media coverage was said to explain the increase in searches
in the phrase ‘Swine Flu’ in this context. But this does not
explain the increase in phrases like ‘fever’. Perhaps Step 5.,
above, might be the cause: people whowere observing flu-
like symptoms in the US (but not from Swine flu) were more
likely to worried as a result of the increased media coverage
and in turn more likely search for information about their
symptoms.

Therefore, we conclude that search-log-based approaches
are best suited to large-scale seasonal epidemics where the
baseline of civil concern is fairly constant. We do not rule
out the potential for early signals in search-logs from unan-
ticipated new outbreaks, but detecting these will require
technology that is more like the needle-in-the-haystack ap-
proach that is the main focus of this paper.

The high-profileNature publication has lead a very large
number of researchers to focus on search data – and only on
search data – as a targeted means of discovering outbreak-
related information on the web (Wilson and Brownstein
2009; Brownstein, Freifeld, and Madoff 2009). One exam-
ple is ‘Dengue Trends’ (Chan et al. 2011). Unlike Ginsberg
et al. (2009) this work did not look for people searching
for symptoms, but simply for the word ‘dengue’. The re-
searchers found a correlation, but did not compare it to other
signal types like open reports in local media. We suggest that
if people start searching for ‘dengue’ in a given region, then
the outbreak is already known.

Training-data size and model selection
We can treat the problem of finding outbreak-related infor-
mation as a document classification task. Given a set of doc-
uments we need to separate those that are outbreak-related
from those that are not.

This is a needle-in-the-haystack scenario, where we have
billions of new reports every day but with much less than
0.01% actually related to outbreaks. As with a typical clas-
sification task, building a supervised learning model requires
labeled training data. Torii et al. (2011) note that acquiring
training data for outbreak-related information is expensive,
and to compensate they explored methods for bootstrapping
training models with very little initial data: “In a real-life
setting, it is expensive to prepare a training data set ... classi-
fiers were trained on 149 relevant and 149 or more randomly
sampled unlabeled articles.” (Torii et al. 2011)

298 labeled items is very small training set. They use a



Figure 2: The increase in F1 accuracy as a greater percent of training items are added, up to 100,000 training items. Note that
the system reported in (Torii et al. 2011) has 298 data points, putting it at around 0.22% of the data here – this makes it themost
accurate at this point of measurement, but it clearly falls short of the other models as more labeled items are added.

random selection of unlabeled articles which they reason-
ably assume will be mostly non-outbreak-related. It is a
reasonable assumption from a model perspective, too. Su-
pervised learning can be an exception to the ‘garbage-in-
garbage-out’ rule, provided that any ‘garbage-in’ is truly
randomly distrubuted with respect to the target problem and
in a high enough volume to avoid over-fitting.

We compare their system to our approach.2 The data
comes from a 5-month period from May to September 2011,
with 100,000 reports labeled by both crowdsourced work-
ers and in-house analysts. The actual number of reports pro-
cessed is in the millions, and 100,000 articles are processed
in anywhere between a few seconds and a few minutes de-
pending on volume.

To ensure replicable results, we limit the information to
only open data sources. For the same reasons, we will con-
strain our own models to a Maximum Entropy (MaxEnt)
learning algorithm and features derived directly from the
text (no dictionaries, medical lexicons, machine-translation
engines, etc).

As many current biosurveillance organizations rely on
human-coded rules, we also simulated a scenario over the
data by seeking an optimal rule-based system. For a best es-
timate, we ran L1 regularization on a linear model to select
the 1,000 best words/sequences. The result is a set of fea-
tures that correspond to rules like “if phrase = ‘flu outbreak’
than confidence = 0.95”. The L1 regularization gives us the
optimal 1,000 and the optimal weights for each rule. It is
unlikely that any humans could actually be so precise in ei-
ther the weights or in finding the set of most optimal rules.

2Without knowing exactly which variation of Naive Bayes was
used we tested both Multinomial and Bernoulli Naive Bayes, which
produced near-identical results. We report Bernoulli Naive Bayes
here, for no particular reason other than Bernoulli’s nephew hap-
pens to be the very first person to apply mathematical models to
disease outbreaks (Bernoulli 1766). While Bernoulli is generally
known to beless accurate for text classificiation, primarily because
it is insensitive to term frequency, we model the ‘title’ and‘descrip-
tion’ fields separately and pressume that modeling the (highvalue)
repetition of terms across the two fields compensated for theloss
of repeated values within each field.

Dispensing with the time-cost of human annotation, we also
assume that the humans have infinite time at each increase
in training set size. While this is also not-realistic, it means
that we can treat these results as a theoretical upper-bound
for this type of human performance.

We collected a stratified balance of articles across the lan-
guages for which we have labels (English, Spanish, Por-
tuguese, Chinese, Arabic, Russian, French, Hindu, Urdu,
Italian, Japanese, Korean, German) with an outbreak-
relevant/not-relevant ratio of 20:1. We evaluated with 10%
hold-out evaluation data. We increased in increments along
a base 10 log scale in order to examine the change in training
set size at small numbers with finer granularity.

The results are in Figure 2. At 298 training items the
model in (Torii et al. 2011) is indeed the more accurate. This
is primarily the result of using Naive Bayes. It is less likely
to overfit the data with most of the prediction weights com-
ing from the prior probability (analysis of the feature vec-
tors confirms this). However, at just a little over 1% of the
training data – about 1,000 training items – the three mod-
els converge. By the time all 90,000 training items are in-
cluded, the MaxEnt model has reached F1=0.862 while the
Bayesian model is at only 0.129. The (simulated) optimal
human system is much more accurate, but still lags with a
final accuracy is F1=0.709 – a figure achieved by our model
with just 8% of the training data.

There is certainly a gain in the Bayesian system: from
F=0.094 to F=0.102 at 1% of the data, to F=1.06 at 10% and
F=1.29 with all training data (note the log scale on thex-axis
flattens out the growth – a linear scale would show a more
distinct increase). But relative to the learning rate of oursys-
tem, it clearly underperforms. It is surprise that a generative
learning algorithm is not as accurate as a discriminative al-
gorithm for a classification task, but note that this was not
the conclusion of Torii et al., which found no difference be-
tween generative and discriminative learning algorithms on
a set of 298 labeled items (Torii et al. 2011).

We conclude that while the while Torii et al. (2011) cor-
rectly interpreted their data, the results should not be extrap-
olated to a more realistic high-volume context.



Active learning
We report here on the extentions to the system to semi-
supervised active learning – a necessary step unless ev-
ery potential document is manually labeled. In addition to
fast annotation, the main advantage of using crowdsourced
workers is the scalability.

There are many patterns of outbreak and reporting, but
one commom one is a sudden increase in reporting from
an outbreak-affected area, with bias towards whichever lan-
guages happen to be spoke in the affected region(s). This
presents a problem for NLP-based approaches. Natural lan-
guage processing, and machine-learning more generally, is
optimal over known data – it will work best over seasonal
variation in endemic outbreaks, not unpredictable new out-
liers. Therefore, the outbreaks that we want to know the most
about are those that are theleast likely to be confidently
identified by a fully automated system. It is vital to have a
human-in-the-loop, for quality control over the information
and to provide confidently labeled data that will allow the
machine-learning algorithms to quickly adapt.

First, we created a semi-supervised learning scenario
where only the most confidently labeled items are added to
the training data, iterating until we had a prediction for every
candidate report.

Second, capped the number of unlabeled items that could
receive a manual label in the supervised system after the first
1% of the data. Dividing the data into time-sequences, we
simulated the situation where only 5 analysts were work-
ing full-time to correctly annotate the most ambiguous items
from the machine learning algorithm. (The selection of ex-
actly ‘5’ workers here is simply because it is the average
number of analysts atepidemicIQ during this period.) With
a fixed workforce, this approach could not label more items
during bursty periods.

In both cases, the accuracy was evaluated over the same
leave-out 10% of the data. The results are, of course, sen-
sitive to assumptions about thresholds for inclusion in the
semi-supervised case, and through-put in the capped-worker
case, but the model with the capped number of workers was
always significantly below the model that could expand the
number of manual annotations through crowdsourcing.

Both th supervised and capped models outperformed the
semi-supervised model, but even the semi-supervised model
outperforming the fully-supervised Naive Bayes model by
F > 20 with only 1% of initial annotation. This indicates
that the strategy proposed by Torii et al. (2011), if not the
specific implementation, was a viable method for leveraging
small amounts of training data to large-scale tasks.

Case-study: European E Coli.
Finally, we present the results a brief study of our system’s
ability to track the recent E Coli. outbreak that centered on
Germany.

Of the millions of articles we parsed, we discarded
most of them (more than 99.9%) as being confidently non-
outbreak-related according to the machine-learning algo-
rithm or crowdsourced workers. Among the remaining re-
ports, a team of 5 analysts collated time-aligned case-counts

for everything that they confirmed was outbreak-related.
We compare our case counts to those that were subse-

quently found theEuropean Center for Disease Control
(ECDC). As Figure 3 shows, the system here is able to filter
information that is almost identical to theECDC’s, but with
the crucial early figures discovered much sooner.

Our analysis of the results, and of our own processes, re-
vealed a number of strengths and weaknesses that we share
below:

The potential to track the outbreak earlier than theECDC
(or to help them track the outbreak earlier) is a big advan-
tage. TheECDC relies on data from a number of member
countries in a number of languages, so the cross-linguistic
processing might be especially relevant.

The reduction in the number of articles that the in-house
analysts had to read was probably the biggest advantage.
While the 99.9% that we discarded would likely contain
some false negatives, it is comforting that the remaining
articles contained enough information to closely match the
ECDC’s eventual results.

The reduction in the number of articles was also a weak-
ness. We looked at everything that the machine-learning al-
gorithm thought had a 1% chance of being an outbreak (the
final machine decision was simply the gestault 50% confi-
dence) and found many articles at relatively low confidence.
It is still a substantial improvement that more than 99.9%
of articles could be fairly safely discarded as being beneath
the 1% low confidence threshold, and analysis of precision-
recall curves show that improvements can be made by shift-
ing the confidence threshold. More data and algorithm se-
lection would also help.

Discussion
The system produced a few interesting surprises. For a
Dengue outbreak in the Phillipines, the system identified the
name of their Health Minister as a confident predictor for
outbreak-related information, which turned out to be agood
indicator of relevant reports. It is unlikely that a purely hu-
man system would have thought to use this person’s name
as a seed for searching relevant information.

For an Ebola outbreak in Uganda the first report we know
of in open media was from India (we are not entirely sure
why). As far as we can tell it also preceded the knowledge
of major health organizations, often by several days. How
many people would think to scan Indian media for reports
about African outbreaks?

Both these examples are anecdotal but part of a trend de-
serving further investigation. We can conclude that machine-
learning predictions are verydifferent to their human
counter-parts in their patterns of discovery and error. This
may lead to novel discoveries, but also a less intuitive
human-computer interaction experience.

We also explored the crowdsourcing aspects of the system
along a number of dimensions. In some tasks, like identifyng
case-counts, location names and quotes from officials, the
quality of the crowdsourcing results were excellent. In oth-
ers, like estimating citizen unrest and instability, the quality
was poor and it may be that these kind of tasks are more
suited to trained analysts.



Figure 3: Tracking the 2011 E Coli outbreak in Europe: a comparison of the system presented here to the later figures of the
European Center for Disease Control (ECDC). The upper and lower bounds of the EpidemicIQ figures represent the range
of case counts reported by different sources. The results show that the system here is able to filter information that is almost
identical to the ECDC’s, but with the crucial early figures discovered much sooner. It is worth emphasizing though, that unlike
search-log-based approaches this isnot a fully automaated process, as the figures include (human) annotations from crowd-
sourced workers with the final numbers compiled by small number of inhouse analysts. It is likely that this is a realistic future
scenario – biosurveillance performed by a mixture of cloud-based machine and human processing, supporting a small number
of domain experts.

Both the machine and crowdsourced systems showed er-
rors separating reports about an outbreak from reports only
about diseases. Most of the errors here were in plain media,
not technical reports, so we assume that this might be ap-
propriate for non-expert crowdsourced workers, but requires
careful task design.

Looking across workforces (we used theCrowdFlower
system that allows access to different work platforms) it
seemed like people from within online games were the most
reliable. It is interesting to imagine European citizens com-
pleting task within a (virtual) farming game in order to help-
ing track the (real) E Coli outbreak outside their doors. The
potential range of scalable workforces is large and not nec-
essarily restricted to unknown individuals.

Conclusions
We have introduced a new way of tracking outbreaks that
leverages natural language processing and crowdsourcing to
detect some of the earliest reports. While natural language
processing allows us to scan open intelligence at a scale that
simply isn’t possible with people alone, crowdsourcing com-
pliments this by allowing the system to adapt to new types
of information quickly, in a manner that is robust over sud-
den spikes in information. It is early days yet, and it is not
clear that the methods we explore can (or should) completely
replace domain experts, but the results are a positive step
towards streamlining the often time-consuming and time-
critical filtering and discovery tasks.

In the last century, we have only eradicated one deadly
pathogen, smallpox. During the same time period, we have
built many more planes. Every transmission is a possibility
for a new mutation or for two viruses to combine into a new
deadly form, and so identifying outbreaks as quickly as pos-
sible is vital.
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