Rattle

Simpler builds for smaller use cases

Neil Mitchell
https://ndmitchell.com/

https://ndmitchell.com/

Build two C files and link

$ cat make.sh

gcc -C main.c

gcc -c util.c

gcc -0 main.exe main.o util.o

Shell script Build system

e Simple to write e More complex

e Full control over commands e Must specify dependencies
o E.g. header files, toolchain

But you gain:

e Parallelism
e Incrementality

Introducing Rattle

$ rattle make.sh

Gives you parallelism, incrementality, cloud builds.

https://qgithub.com/ndmitchell/rattle

Build Systems with Perfect Dependencies,
Sarah Spall, Neil Mitchell and Sam Tobin-Hochstadt
OOPSLA 2020

Build Scripts with Perfect Dependencies

SARAH SPALL, ladiura Usiverary, USA
NEIL MITCHELL, Facebonk UK
SAM TOBIN-HOCHSTADT, Iadisns University USA

Tkl ccripts for et bl epatemu dewcrde the actons 4 na, and the Spedncics Setuwes thoss atioes-
31 afin bushd acripes got thims depeedencies wioag Med bl apts have botk rov S depvadencio (leading
13 Boanwt bukd cupun) 258 1 mary dependoncivs (adiag to exceudre wbbds 2ad edaced paallein)
Anry peograrsnes who bax wondesd why 3 maal chunge led 1o exce compllation, o6 who Teaeked 1o 2
“chean” wtvp, bus cflered the (L] offocts of ncermect deperdency qeciication. We culins a bald syt where
deperdeacios are ax spuciliod Wt Kactead captamd by raang eaaction. The consqamncy i that depeadencies
A abacrps cormect by conatructioe and Seild wop are cacer to wiits. The sinpled inaplersentation of ou
appeoach woakd ows paralelan, Sat we am sble to recover paralidion ing Qecsliien

CCS Concopte: + Saftware 3nd i caginesriag — Softwars malntensace sools
Addzicend Koy Woods asnl Theases Bidd oy cosn leactocul poogs sssaiag
ACM Reference Format

Sarab Spal, N Michell and Sas Tadin-Tochetadt 2008 Pl Scripts with 7
ACM Pragram Long 4 OOFSLA Asticde 169 (November 2008 5 pages B

lect Dependuncion Frac
op/161 M

1 INTROODUCTION

Every ace-trivial puece of softerare inchades 3 “budld oystem”, describing how to set wp the syt
froms soarce code. Bedd wcripts | Mokchor o al 201¥] descnibe cammands 4 ram and dependescies ro
reypect. For example, using the Maxs uild rystem [Feldmon 1975) a build wrpt might kook lice

Thic sceipt contairs thove rulex. Locking at the firet rule, # wvys main. o depends
12 peoduced by renrang gee ~c main. c. What f we copy the commands ssio 3 shell

That's dhorter, srmpler and eanter b fellow. betwad of declaring the outpats sad depvadences of
each command, we've mesely piven one vabd ardering of the cosrands (we could squally have
put gee - util.c fist) This simpler specification has addiond berwfits. Firat, we've fixed

At abvvson ik il biuls Uiy USA, Gupalip st Yook Mchell Fasebuk. (K. sduatitulbippu
e S Tl S botan s Uiy, LA, s i ol

e O
This weeh i Biovmnd saee & it Cosmmmns Altsutian 08 letaasticand Lis sas
v buid by 4w

P ACH Prograss. Lasg. Vol 4 N COPSLA. Ariede 1% Publicatinn & Nicwwsiber 3253

https://github.com/ndmitchell/rattle

How to get incrementality?

e The script runs a series of commands

o The future commands can depend on the result of previous commands (dynamic
dependencies)

e For each command, Rattle records the inputs/outputs using fsatrace
o Syscall hooking, LD_LIBRARY_PRELOAD, Windows hooks

e Next time it encounters that command, if no inputs have changed, the outputs

are reused
o Assumes commands are deterministic

Fabricate was one of the first build systems to do this trick.

How to get cloud builds?

e \Whenever we run a command, we store the inputs/outputs in a cloud cache
e Before running a command, if any command matches, download the outputs

Not quite as simple as it seems... Some inputs (e.g. C files) may change which
other inputs are required (e.g. header files). But (at worst) just scan for a match.

How to get parallelism?

The tricky one!

Guess what commands will come next. Run them. See if you were right.
Speculation - think of the CPU speculating on instructions

o And remember how that has turned out - lots of tricky details
For speculation to be valid, we need to know certain properties about
commands

o [E.g. doesn’t read a file that hasn’t yet been written

o The paper introduced “hazards” and proves the necessary properties, Rattle checks them
o If hazards trip you up, rerun (speed hit)

Does it work? FSATrace

Compile time at each successive commit &— MAKE 1 thread

1§
K e MAKE 4 threads
§ : —a— RATTLE 1 thread
A O'OC , —a— RATTLE 4 threads
O | | | | | | l J
0 2 4 6 8 10 12 14 16

Same time as Make, despite not having the commit info

Does it work? Node.js

104

o~ MAKE 1 thread
Compile time at each successive commit =~ —®—~ MAKE 4 threads

©

S 103 —8— MAKE 32 threads

s —a— RATTLE 1 thread

= —a— RATTLE 4 threads
-§ 102 —&— RATTLE 32 threads
o

Q

U

[9p]

10!
| | | | |

0 5 10 15 20 %5 30 35 10

Faster than make, because dependencies are precise

Why “small” use cases?

e Immature technology (technology preview really)

e Must give a single linearisable trace
o Doing that compositionally at scale often requires dependencies

Rattle makes it easy to do a simple build system.

Sweet spot might be small open-source multi-language projects?

