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Should Haskell be strict? (No)

● Laziness is composable
– all f = or . map f

● Laziness lets you express infiniteness
– zip [1..] xs,   primes !! 200

● Laziness matters for monads
– putStrLn “Hello” >> error “done”

● Laziness is more natural
– Most beginners assume Haskell is lazy

But….



  

The counterargument

sum i [] = i

sum i (x:xs) = sum (i+x) xs

main = print $ sum 0 [1..10]

● What is the peak memory usage?

sum = foldl (+) 0



  

The execution

1,2,3,4,5,6,7,8,9,10

Strict

Lazy
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The solution

sum !i [] = i

sum i (x:xs) = sum (i+x) xs

● Annotate “the accumulator is strict”
● Each step reduces the accumulator
● Speedup: -O0 x13, -O1 or -O2 x17

sum = foldl’ (+) 0



  

Space leaks

● Relatively rare (1 per 2000 lines?)
● Not compositional property
● Not fatal, but significant performance hit
● Easy to fix (1m - 2h)
● Hard to spot

● This talk mostly fixes one of those issues
● And thus answers laziness vs strictness :)



  

One simple trick...

● GHC stack is used to evaluate deferred bits
● Limiting the stack turns space leaks into errors
● Track down errors, solve them

Limit the GHC stack

Idea with Tom Ellis + trains



  

The recipe

ghc --make Main.hs -rtsopts -prof -auto-all
– Compile with profiling

./Main +RTS -K${N}K
– Find lowest ${N} where program works

./Main +RTS -xc -K${N-1}K
– Get a stack trace, examine it

● Fix. Repeat until -K1K works



  

The output

C:\Neil\temp>Main +RTS -K100K -xc

*** Exception (reporting due to +RTS -xc): (THUNK_STATIC), stack trace:

  Main.sum1,

  called from Main.main,

  called from Main.CAF

*** Exception (reporting due to +RTS -xc): (THUNK_STATIC), stack trace:

  Main.sum1,

  called from Main.main,

  called from Main.CAF

Main: Stack space overflow: current size 33560 bytes.

Main: Use `+RTS -Ksize -RTS' to increase it.



  

Disclaimers

● Space leak investigation is sometimes not trivial
– It’s a property of the way expressions are evaluated

– Property does not compose!

– Often it’s in the libraries you use

● Other things can use a lot of stack



  

Examples: Happy

● Parser generator for Haskell
● Medium (4800 lines), old, unfamiliar code base
● Run on one of the test examples (Calculator.ly)
● Found and fixed 3 space leaks

– Now works at -K1K

– 2 were trivial to fix

– 1 took ~2 hours (5 min to fix, rest to check)



  

Example 1: Happy

indexInto :: Eq a => Int -> a -> [a] -> Maybe Int

indexInto _ _ [] = Nothing

indexInto i x (y:ys) =

    if x == y then Just i else indexInto (i+1) x ys



  

Example 2: Happy

foldr (\(a,b) (c,d) -> (a+b,b+d)) (0,0) conflictList



  

Example 2: Happy

foldr (\(a,b) (c,d) -> (a+b,b+d)) (0,0) conflictList

foldl' (\(a,b) (c,d) ->

    let !ac = a + c

         !bd = b + d

    in (ac,bd))

    (0,0) conflictList



  

The ugly truth: Stack limits

● GHC “mostly” obeys the stack limits
– Stack limits can be exceeded while masked

– Stack limits on the main thread are different

● Standard trick: join . onceFork



  

The ugly truth: Exception traces

● -xc prints out all exceptions
– Your program may have a lot of exceptions

– E.g. every ‘doesFileExist’ in some cases

– Some exceptions may print more than once

● Usually the exception is near the end
● Worse if your program eats async exceptions
● Pipe them to a file, grep afterwards



  

The ugly truth: Stack contents

● The call stack elides adjacent duplicates
– Which is exactly what we want to see!

● The stack probably doesn’t peek inside libraries
● Stack trace is more a list of hints, CAF’s get weird

{-# NOINLINE wrapper1 #-}

wrapper1 :: a -> a

wrapper1 x = x



  

Copy/Paste Toolbox

seq, deepseq, evaluate, force

foldl’’ f = foldl’ (\a b -> force $ f a b)

newThread a = unsafePerformIO $

    join $ onceFork return $! force a



  

False Positives

● reverse does not trigger a positive
● mapM/forM/sequence on IO does

main = do

    (t, _) <- duration $ mapM evaluate [1..100000]

    print t



  

mapM stack trace

*** Exception (reporting due to +RTS -xc): (THUNK_STATIC), stack 
trace:

  Main.main,

  called from Main.CAF

  --> evaluated by: System.Time.Extra.duration,

  called from Main.main,

  called from Main.CAF

*** Exception (reporting due to +RTS -xc): (THUNK_STATIC), stack 
trace:

  Main.main,

  called from Main.CAF

Main: Stack space overflow: current size 33560 bytes.



  

Understanding the cause

● mapM f = sequence . map f

sequence :: [IO a] -> IO [a]

sequence [] = IO $ \r -> (# r, () #)

sequence (y:ys) = IO $ \r -> case unIO y r of

    (# r, y #) -> case unIO (sequence xs) r of

        (# r, ys #) -> (# r, y:ys #)

Recursion inside a case



  

Fixing mapM

● Use mapM_ if you don’t need the result
● Use mapIO

– http://www.joachim-breitner.de/blog/
684-Constructing_a_list_in_a_monad_revisited 

● Use streaming (conduit/pipes)

● Definitely an annoyance



  

Example 3: QuickCheck

quickCheck $ \p ->

    label (if p > 0 then "+ve" else "-ve") True

+++ OK, passed 100 tests:

54% -ve

46% +ve



  

Example 3: QuickCheck

quickCheckWithResult stdArgs{maxSuccess=10000} $

    \(p :: Double) -> label "foo" True

(9999 tests)

Stack space overflow: current size 33624 bytes.

● At the end – a hint!
– We’re detecting when the space leaks gets forced



  

Example 3: QuickCheck data

● Reproduce in QuickCheck to get better stack
● Found Map String Int, built with unionWith (+)

● Two “plausible” leaks:
– unionWith (+) x1 $ unionWith x2 $ unionWith …

– Map {foo = 1 + 1 + 1 + 1 ...}



  

Example 3: QuickCheck solution

-  import Data.Map

+ import Data.Map.Strict

● Fixed in QuickCheck 2.8.2
● Lay undiscovered for years, easy to fix
● O(n) extra memory required



  

Other examples

● base library: maximumBy
● Alex: lazy state monad
● Pretty: A strictness annotation
● Shake: three relatively small ones
● Hoogle: four or five (sum on Word16, strict Map 

with lazy pairs)
– Uses -K1K in the test suite, so now they are fixed 

immediately



  

Weaknesses

● There are memory issues that this doesn’t hit
– Drag/lag/void/use problems

– Genuine memory leaks

● Only finds the biggest space leak
– Sometimes small space leaks are amplified

– Your worst leak may not be the biggest

– Serious leaks can be too small to detect



  

GHC etc. Requests

● -xc=StackOverflow, only show one type of 
exception

● Show repeat counts in the stack trace
● Call stacks inside libraries

– At least the outer-most level
– Can do with -auto-all when building (Cabal job?)

● “Exclude” mapM?
● Toolbox should be on Hackage



  

Example 4: Shake

● Shake v0.3 introduced a space leak
– Went undetected for a year

– Then blew up in production

– Cost 1.5Gb memory (on a 32 bit system)



  

Example 4: Shake mem profile

● Compile: -rtsopts -prof -auto-all -caf-all
● Run: +RTS -xt -hy



  

Example 4: Shake diagnosis

● Two possibilities:
– There are lots of threads in flight (there weren’t)

– There are lots of stacks kept alive by ThreadId



  

Example 4: Shake understanding

● Shake thread pool had:

data Pool = Pool {threads :: Set ThreadId, …}

● Threads added when spawned, removed when 
finished

● Set of threads only used on exception cleanup
● Fix was trivial
● Significant space leak amplification



  

Example 4: Wrap up

● Space leak resulted in complete system failure
● Solved before my techniques were available

– Took several painful weeks, not easy

– Ended in a 1 character diff (plus comments)

● Set me on a journey…

                                 … leading to today



  

Call to arms

● Fix your projects, fix other peoples projects
● A great way to get into a new project

– Roughly all projects have such bugs

– Fixing them is an awesome community service

● Add -K1K to your test suite
– Much easier to fix with a breaking diff



  

Conclusion: Lazy > Strict

● Space leaks no longer worry me
● Relying on production Haskell no longer worries 

me (as much)
● Go forth and put Haskell in production!
● I am! Want to help?
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