

Plugging Space Leaks,
Improving Performance

Neil Mitchell
https://github.com/ndmitchell/spaceleak

Should Haskell be strict? (No)

● Laziness is composable
– all f = or . map f

● Laziness lets you express infiniteness
– zip [1..] xs, primes !! 200

● Laziness matters for monads
– putStrLn “Hello” >> error “done”

● Laziness is more natural
– Most beginners assume Haskell is lazy

But….

The counterargument

sum i [] = i

sum i (x:xs) = sum (i+x) xs

main = print $ sum 0 [1..10]

● What is the peak memory usage?

sum = foldl (+) 0

The execution

1,2,3,4,5,6,7,8,9,10

Strict

Lazy

Ideal

15

6..1015

6..100+1+2+3+4+5

The solution

sum !i [] = i

sum i (x:xs) = sum (i+x) xs

● Annotate “the accumulator is strict”
● Each step reduces the accumulator
● Speedup: -O0 x13, -O1 or -O2 x17

sum = foldl’ (+) 0

Space leaks

● Relatively rare (1 per 2000 lines?)
● Not compositional property
● Not fatal, but significant performance hit
● Easy to fix (1m - 2h)
● Hard to spot

● This talk mostly fixes one of those issues
● And thus answers laziness vs strictness :)

One simple trick...

● GHC stack is used to evaluate deferred bits
● Limiting the stack turns space leaks into errors
● Track down errors, solve them

Limit the GHC stack

Idea with Tom Ellis + trains

The recipe

ghc --make Main.hs -rtsopts -prof -auto-all
– Compile with profiling

./Main +RTS -K${N}K
– Find lowest ${N} where program works

./Main +RTS -xc -K${N-1}K
– Get a stack trace, examine it

● Fix. Repeat until -K1K works

The output

C:\Neil\temp>Main +RTS -K100K -xc

*** Exception (reporting due to +RTS -xc): (THUNK_STATIC), stack trace:

 Main.sum1,

 called from Main.main,

 called from Main.CAF

*** Exception (reporting due to +RTS -xc): (THUNK_STATIC), stack trace:

 Main.sum1,

 called from Main.main,

 called from Main.CAF

Main: Stack space overflow: current size 33560 bytes.

Main: Use `+RTS -Ksize -RTS' to increase it.

Disclaimers

● Space leak investigation is sometimes not trivial
– It’s a property of the way expressions are evaluated

– Property does not compose!

– Often it’s in the libraries you use

● Other things can use a lot of stack

Examples: Happy

● Parser generator for Haskell
● Medium (4800 lines), old, unfamiliar code base
● Run on one of the test examples (Calculator.ly)
● Found and fixed 3 space leaks

– Now works at -K1K

– 2 were trivial to fix

– 1 took ~2 hours (5 min to fix, rest to check)

Example 1: Happy

indexInto :: Eq a => Int -> a -> [a] -> Maybe Int

indexInto _ _ [] = Nothing

indexInto i x (y:ys) =

 if x == y then Just i else indexInto (i+1) x ys

Example 2: Happy

foldr (\(a,b) (c,d) -> (a+b,b+d)) (0,0) conflictList

Example 2: Happy

foldr (\(a,b) (c,d) -> (a+b,b+d)) (0,0) conflictList

foldl' (\(a,b) (c,d) ->

 let !ac = a + c

 !bd = b + d

 in (ac,bd))

 (0,0) conflictList

The ugly truth: Stack limits

● GHC “mostly” obeys the stack limits
– Stack limits can be exceeded while masked

– Stack limits on the main thread are different

● Standard trick: join . onceFork

The ugly truth: Exception traces

● -xc prints out all exceptions
– Your program may have a lot of exceptions

– E.g. every ‘doesFileExist’ in some cases

– Some exceptions may print more than once

● Usually the exception is near the end
● Worse if your program eats async exceptions
● Pipe them to a file, grep afterwards

The ugly truth: Stack contents

● The call stack elides adjacent duplicates
– Which is exactly what we want to see!

● The stack probably doesn’t peek inside libraries
● Stack trace is more a list of hints, CAF’s get weird

{-# NOINLINE wrapper1 #-}

wrapper1 :: a -> a

wrapper1 x = x

Copy/Paste Toolbox

seq, deepseq, evaluate, force

foldl’’ f = foldl’ (\a b -> force $ f a b)

newThread a = unsafePerformIO $

 join $ onceFork return $! force a

False Positives

● reverse does not trigger a positive
● mapM/forM/sequence on IO does

main = do

 (t, _) <- duration $ mapM evaluate [1..100000]

 print t

mapM stack trace

*** Exception (reporting due to +RTS -xc): (THUNK_STATIC), stack
trace:

 Main.main,

 called from Main.CAF

 --> evaluated by: System.Time.Extra.duration,

 called from Main.main,

 called from Main.CAF

*** Exception (reporting due to +RTS -xc): (THUNK_STATIC), stack
trace:

 Main.main,

 called from Main.CAF

Main: Stack space overflow: current size 33560 bytes.

Understanding the cause

● mapM f = sequence . map f

sequence :: [IO a] -> IO [a]

sequence [] = IO $ \r -> (# r, () #)

sequence (y:ys) = IO $ \r -> case unIO y r of

 (# r, y #) -> case unIO (sequence xs) r of

 (# r, ys #) -> (# r, y:ys #)

Recursion inside a case

Fixing mapM

● Use mapM_ if you don’t need the result
● Use mapIO

– http://www.joachim-breitner.de/blog/
684-Constructing_a_list_in_a_monad_revisited

● Use streaming (conduit/pipes)

● Definitely an annoyance

Example 3: QuickCheck

quickCheck $ \p ->

 label (if p > 0 then "+ve" else "-ve") True

+++ OK, passed 100 tests:

54% -ve

46% +ve

Example 3: QuickCheck

quickCheckWithResult stdArgs{maxSuccess=10000} $

 \(p :: Double) -> label "foo" True

(9999 tests)

Stack space overflow: current size 33624 bytes.

● At the end – a hint!
– We’re detecting when the space leaks gets forced

Example 3: QuickCheck data

● Reproduce in QuickCheck to get better stack
● Found Map String Int, built with unionWith (+)

● Two “plausible” leaks:
– unionWith (+) x1 $ unionWith x2 $ unionWith …

– Map {foo = 1 + 1 + 1 + 1 ...}

Example 3: QuickCheck solution

- import Data.Map

+ import Data.Map.Strict

● Fixed in QuickCheck 2.8.2
● Lay undiscovered for years, easy to fix
● O(n) extra memory required

Other examples

● base library: maximumBy
● Alex: lazy state monad
● Pretty: A strictness annotation
● Shake: three relatively small ones
● Hoogle: four or five (sum on Word16, strict Map

with lazy pairs)
– Uses -K1K in the test suite, so now they are fixed

immediately

Weaknesses

● There are memory issues that this doesn’t hit
– Drag/lag/void/use problems

– Genuine memory leaks

● Only finds the biggest space leak
– Sometimes small space leaks are amplified

– Your worst leak may not be the biggest

– Serious leaks can be too small to detect

GHC etc. Requests

● -xc=StackOverflow, only show one type of
exception

● Show repeat counts in the stack trace
● Call stacks inside libraries

– At least the outer-most level
– Can do with -auto-all when building (Cabal job?)

● “Exclude” mapM?
● Toolbox should be on Hackage

Example 4: Shake

● Shake v0.3 introduced a space leak
– Went undetected for a year

– Then blew up in production

– Cost 1.5Gb memory (on a 32 bit system)

Example 4: Shake mem profile

● Compile: -rtsopts -prof -auto-all -caf-all
● Run: +RTS -xt -hy

Example 4: Shake diagnosis

● Two possibilities:
– There are lots of threads in flight (there weren’t)

– There are lots of stacks kept alive by ThreadId

Example 4: Shake understanding

● Shake thread pool had:

data Pool = Pool {threads :: Set ThreadId, …}

● Threads added when spawned, removed when
finished

● Set of threads only used on exception cleanup
● Fix was trivial
● Significant space leak amplification

Example 4: Wrap up

● Space leak resulted in complete system failure
● Solved before my techniques were available

– Took several painful weeks, not easy

– Ended in a 1 character diff (plus comments)

● Set me on a journey…

 … leading to today

Call to arms

● Fix your projects, fix other peoples projects
● A great way to get into a new project

– Roughly all projects have such bugs

– Fixing them is an awesome community service

● Add -K1K to your test suite
– Much easier to fix with a breaking diff

Conclusion: Lazy > Strict

● Space leaks no longer worry me
● Relying on production Haskell no longer worries

me (as much)
● Go forth and put Haskell in production!
● I am! Want to help?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

