
Migrating HLint to the GHC API

Neil Mitchell

ndmitchell.com

https://ndmitchell.com/

What is HLint?

• A tool for suggesting possible improvements to
Haskell code.

• https://github.com/ndmitchell/hlint

$ hlint darcs-2.1.2

darcs-2.1.2\src\CmdLine.lhs:94:1: Warning: Use concatMap

Found:

 concat $ map escapeC s

Perhaps:

 concatMap escapeC s

https://github.com/ndmitchell/hlint
https://github.com/ndmitchell/hlint

How HLint works

• For each file individually

– Parse the file into an AST

– Examine the AST with lots of possible “hints”

– Report the ones that match, with suggestions

What changed since HLint v0?

Dr Haskell
HLint

GHC 6.4
GHC 8.10

Config .hs
Config YAML

darcs
git

Yhc core
Parser lib

GPL
BSD

New
14 years old

170 src lines
9K src lines

2 hints
821 hints

PICKING A PARSER

Which parser to pick?

• HLint 2006-2008: Used Yhc Core
– Dependency on compiling your code with Yhc

– Mostly unused

• HLint 2008, wanted to pick a parser, options:
– GHC API, the internals of GHC, exposed in 2006

– haskell-src, forked the GHC parser in 2004 (or
earlier?), standalone library

– haskell-src-exts, forked the GHC parser in 2004,
standalone library, added XML literals etc

Parser showdown (2008)

haskell-srcs-exts (HSE)

• Stable since 2004
• Easy to modify
• Fast release cycle
• Compatible with GHC
• Some other users
• Responsive maintainer

(Niklas Broberg)

GHC API

• Existed since late 2006
• Significant changes in

every release
• Hard to modify
• Long release cycle
• Compatible with GHC
• Slow link times (minutes)
• No real users

Haskell-src-exts worked well

• Simple API

• Good documentation

• Good printing of source

• Easy to pattern match against

• Later, added precise span information

Getting less compatible

• Lots of examples of it getting less compatible

• 64 issues tagged as HSE bugs, probably more

hgcastWith
 :: forall (a :: k) (b :: k') (r :: Type).
 (a :~~: b)
 -> (a ~~ b => r)
 -> r

getter (getIdent -> unIdent -> parent) =
 TM.toCamel parent

module Data.HTree
 (HTree(..), HShape, HL, type (:++:))
 where

Compatibility matters

• Every incompatibility means a “parse error”
for a user

– They report, I report upstream, wait for a fix
(sometimes years)

– They don’t report, might not use HLint anymore,
definitely a bad experience

Parser showdown (2018)

haskell-srcs-exts (HSE)

• Slow release cycle
• Incompatible with GHC
• Multiple short-term

maintainers
• HLint the biggest user

GHC API

• No need to modify
• Medium release cycle
• Compatible with GHC
• Big changes in every

release
• Much worse as a library

Therefore…

• HLint should change to the GHC API

• But…

– Big changes in every version

– Much worse as a library

Version compatibility

• HLint is very tied to the AST, every minor AST
change breaks something

• HLint supports GHC 8.6, 8.8, 8.10

• Forcing users to upgrade in lockstep would
suck

• What to do:

– CPP?

– Something else?

Is CPP infeasible?

• GHC 8.8 to 8.10:
– 40 changed files

– 416 additions, 386 deletions

• If we had been CPP based that would have
been grim
– An additional 1.5K lines? Per release 

– No good IDE support

– Every PR contribution in 3 flavours

– Impossible to refactor

Smart solution!

• Use the GHC parser

• Copied from GHC repo to a
standalone library

• Write a script to copy the
right code in future

Had the idea about 4 years
before implementation…

ghc-lib

• ghc-lib-parser is the GHC parser, 194 modules

• ghc-lib is everything else, 327 modules

– Neither are fast to compile…

• v8.10.2.20200808 is GHC 8.10.2

• Supports 3 GHC versions, using GHC’s
bootstrap guarantee

• Doesn’t have any libraries, e.g. base, so you
need to find those yourself

ghc-lib implementation

• GHC has lots of generated code
• Also it builds with a custom build system

• So run the build system a bit
• Move the sources around
• Merge dependencies (e.g. template-haskell)
• Preprocess a bit
• Produce a .cabal library
• About 1000 lines of code

ghc-lib credits

Shayne Fletcher and Digital Asset – thanks!

Why GHC is worse?

• `show` debugging doesn’t work (use pretty-print)

• Lots of abstract types

• Lots of types of names: Id, Name, RdrName…

• Type families galore, for trees that grow

• Lots of code, poorly documented

• Lots of partial functions

• Pat/expr merging in some places

• Long compile times for ghc-lib-parser (e.g. CI)

asDo (view -> App2 bind lhs (Lambda _ [v] rhs)) =
 [Generator an v lhs, Qualifier an rhs]

asDo (view ->
 App2 bind lhs
 (L _ (HsLam _ MG {
 mg_origin=FromSource
 , mg_alts=L _ [
 L _ Match { m_ctxt=LambdaExpr
 , m_pats=[v@(L _ VarPat{})]
 , m_grhss=GRHSs _
 [L _ (GRHS _ [] rhs)]
 (L _ (EmptyLocalBinds _))}]}))
) =
 [noLoc $ BindStmt noExtField v lhs noSyntaxExpr noSyntaxExpr
 , noLoc $ BodyStmt noExtField rhs noSyntaxExpr noSyntaxExpr]

Solution

• Suck it up 

• Working on wrappers like ghc-lib-parser-ex

– Again, credits to Shayne

• More abstractions tailored for GHC API

CHANGING PARSER

HLint is used and popular

• Lots of contributors, lots of users, 414 PRs

• Conversion could take a long time (months)

• Stop-the-world conversion was not feasible

Incremental conversion

• Preparation
– Get us ready to support both at once

• Conversion
– Convert module at a time

• Cleanup
– Get rid of whatever we introduced in preparation

Make regular releases throughout, catch bugs

But! Minimize API incompatible 0.1 bumps

HLint architecture

Support

• CmdLine

• Testing

• Suggestion type

• Scope utils

• Parallelism

• Report writing

Hint groups (17)

• Match (754)

• Pragmas

• Comments

• Brackets

• Monads

• …

PREPARATION

Delete whatever we could

• Support for .hs config files (already supported
.yaml)

• Support for QuickCheck hint generation
(didn’t work since GHC 7.2)

• Anything marked deprecated

• Remove support for older GHC

Add the ghc-lib dependency

• Adding a huge dependency might break stuff

• And you have no idea what!

• First step, add a dependency on ghc-lib-parser

• Ensure ghc-lib-parser compiles for everyone

• Make a release (nothing broke – yay!)

Abstract the API

• HLint has an API, in terms of HSE types

• Make some of the fundamental ones abstract

parseModuleEx

 :: ParseFlags

 -> FilePath

 -> Maybe String

- -> IO (Either ParseError (Module SrcSpanInfo, [Comment]))

+ -> IO (Either ParseError ModuleEx)

Parse twice

data ModuleEx = ModuleEx {

 hse :: (Module SrcSpanInfo, [Comment]),

 ghc :: Located (HsModule GhcPs)

}

• Parse twice, propagate errors if either fail

Bugs

• v2.1.18, v2.1.19, accidentally changed API,
reverted in v2.1.19, v2.1.20 (PVP violation)

• v2.1.21, realised it caused segfaults in haskell-
ide-engine

– getOrSetLibHSghc modifies a global variable

– Representation of FastString table changed

– GHC API and ghc-lib-parser were both using it

– Moritz Kiefer figured it out

CONVERSION

Hint by Hint

• Change each hint from use the HSE AST, to the
GHC AST

• As part of that, write any libraries/utils it
required

• Go from easiest to hardest, as the utils are
fleshed out

Hint 1: Newtype

Suggest newtype instead of data for type
declarations that have only one field.

• data Foo = Foo Int -- newtype Foo = Foo Int

– Plus 18 other test cases

4 files changed, 123 additions and 42 deletions.

Credit to Georgi Lyubenov

Hint 2: Naming

Should things be in CamelCase or not. 19 tests.

5 files changed, 104 additions, 57 deletions.

Starting to become a pattern…

Hint 11: Extensions

Are these extensions unused. 60 tests.

6 files changed, 246 additions, 148 deletions.

Credit to Shayne Fletcher

Example extension hint

used BangPatterns =
 hasS isPBangPat ||^ hasS isStrictMatch

isPBangPat :: LPat GhcPs -> Bool
isPBangPat (L _ BangPat{}) = True
isPBangPat _ = False

hasS :: (Data x, Data a) => (a -> Bool) -> x -> Bool
hasS test = any test . universeBi

Type level programming is untyped

• Uniplate universeBi relies on the target type

• GHC data types can be polymorphic

f :: GRHS a b -> Bool

f (GRHS _ xs _) = length xs > 1

a = GhcPs

b = LHsExpr GhcPs

Hint 17: Match

The match hint applies rules:

 - warn: {lhs: concat (map f x), rhs: concatMap f x}

f/x are unification variables, match any expression

• For every sub expression

– Match, check unification, check conditions, substitute

CLEANUP AND POLISH

Clean up technical debt

• Delete all unused old mini-libraries

• Move modules around

• Remove primes, e.g. Scope’ -> Scope

• Remove HSE entirely

• Remove all HSE types in API, breaking API
– Fixities

– Parse options

• v3.0 + release post (2.0 was 2017-04-06)

Final release

• Family caught COVID-19 in March, waited to
recover before releasing

3.0, released 2020-05-02

 … 52 lines …

 Improve parse error context messages

 … 11 API breaks …

 Merge ParseMode into ParseFlags

2.2.11, released 2020-02-09

Respond (quickly) to bugs

3.1.4, released 2020-05-31
 #1018, stop --cross being quadratic
3.1.2, released 2020-05-24
 #1014, don't error on empty do blocks
3.1.1, released 2020-05-13
 #993, deal with infix declarations in the module they occur
 #993, make createModuleEx use the default HLint fixities
3.1, released 2020-05-07
* #974, split ParseFlags.extensions into enabled/disabled
 #971, add support for -XNoFoo command line flags
 #971, add support for NoFoo language pragmas
3.0.4, released 2020-05-03
 #968, fail on all parse errors
 #967, enable TypeApplications by default
3.0.3, released 2020-05-03
 #965, fix incorrect avoid lambda suggestion
3.0.2, released 2020-05-03
 #963, don't generate use-section hints for tuples
 #745, fix up free variables for A{x}, fixes list comp hints
3.0.1, released 2020-05-02
 #961, don't crash on non-extension LANGUAGE pragmas, e.g. Safe
3.0, released 2020-05-02

1 month
13 regressions

9 releases
1 API change

Fun bugs: Language pragmas

• {-# LANGUAGE Safe, GADTs #-}

– Turns out “Safe” is not like other extensions

• {-# LANGUAGE NoGADTs #-}

– We didn’t support negation

• Enable TypeApplications by default

– Not really a bug, but wasn’t possible before
because haskell-src-exts implemented it wrong

HSE /= GHC

Fun bugs: Infix declarations

• HLint has a “default” set of infix declarations

– Those in base

– Plus those that are “common” – lens, hspec,
quickcheck, esqueleto, lattices

– Plus those that are “tricky” - `on`

• Need to merge that, with user prefs, with infix
declarations in the module

• Got it all kinds of wrong
Early work not

revisited.
Lacking tests.

Fun bugs: Parse failed successfully

x = f (g @X), with –XNoTypeApplications

POk!

• But with errors

• Gives f (_) as the parse tree

• Those are redundant brackets!

GHC surprises.
Our expectations.

Fun bugs: Accidentally quadractic

• --cross became quadratic

• List comprehension gone wrong

– [… | x <- xs, x <- xs]

https://neilmitchell.blogspot.com/2020/05/hlint-cross-
was-accidentally-quadratic.html

Performance in
corner cases

https://neilmitchell.blogspot.com/2020/05/hlint-cross-was-accidentally-quadratic.html
https://neilmitchell.blogspot.com/2020/05/hlint-cross-was-accidentally-quadratic.html
https://neilmitchell.blogspot.com/2020/05/hlint-cross-was-accidentally-quadratic.html
https://neilmitchell.blogspot.com/2020/05/hlint-cross-was-accidentally-quadratic.html
https://neilmitchell.blogspot.com/2020/05/hlint-cross-was-accidentally-quadratic.html
https://neilmitchell.blogspot.com/2020/05/hlint-cross-was-accidentally-quadratic.html
https://neilmitchell.blogspot.com/2020/05/hlint-cross-was-accidentally-quadratic.html
https://neilmitchell.blogspot.com/2020/05/hlint-cross-was-accidentally-quadratic.html
https://neilmitchell.blogspot.com/2020/05/hlint-cross-was-accidentally-quadratic.html
https://neilmitchell.blogspot.com/2020/05/hlint-cross-was-accidentally-quadratic.html

AFTERMATH

Conclusion

• It worked – took about 1 year

– 2019-04-17 .. 2020-05-31, 31 releases

– 229 PRs, 23 contributors (3 mostly on conversion)

– 818 commits, 8685 lines added, 8426 deleted

– I didn’t personally convert a single hint

• Now we have few/no GHC incompatibilities

• Did HLint users notice?

