Detecting Pattern-Match Fallures
In Haskell

Neil Mitchell and
Colin Runciman
York University

Does this code crash?
«__ 7

risers [] =]

risers [X] = [[X]]

risers (x:y.etc) =
If Xx <ythen (x:s) :ss else [X]:(s:SS)
where (s:ss) = risers (y:etc)

> risers [1,2,3,1,2] = [[1,2,3],[1,2]]

Does this code crash?
«__ 7

risers [] =]

risers [X] = [[X]]

risers (x:y.etc) =
If Xx <ythen (x:s):ss else [X]:(s:SS)
where (s:ss) = risers (y:etc)

. Potential crash
> riSers [1,2,0,1,c5 — [[4ye,0], [+, 2]]

Does this code crash?
«__ 7

rnsers |J il Property:
risers [X] = [[X]] risers () =(_)
risers (x:y.etc) =
If Xx <ythen (x:s):ss else [X]:(s:SS)
where (s:ss) = risers (y:etc)

. Potential crash
> riSers [1,2,0,1,c5 — [[4ye,0], [+, 2]]

Overview
«_«__ 00077

e The problem of pattern-matching

e A framework to solve patterns

e Constraint languages for the framework
e The Catch tool

e A case study: HsColour

e Conclusions

The problem of Pattern-Matching
-

head (X:XS) = X

head X_Xs = case X_Xxs of
X:XS — X
[] — error “head []”

e Problem: can we detect calls to error

Haskell programs “go wrong”
-

e “Well-typed programs never go wrong”

e But...
- Incorrect result/actions — requires annotations
- Non-termination — cannot always be fixed
— Call error — not much research done

My Goal

-]
e \Write a tool for Haskell 98
- GHC/Haskell is merely a front-end issue

e Check statically that error is not called
- Conservative, corresponds to a proof

e Entirely automatic
-~ No annotations

= Catch

Preconditions
c- |
e Each function has a precondition

e If the precondition to a function holds, and
none of its arguments crash, it will not crash

ore(head x) =x € {(:) _ _}
ore(assert xy) = x € {True}
ore(null x) = True pre(error xX) = False

Properties
-

e A property states that if a function is called
with arguments satisfying a constraint, the
result will satisfy a constraint

X e {() __}= (null x) e {True}

x €{() [l 3 = (head x) € {[l}
X € {[]} = (head x) € {True}

< Calculation direction

Checking a Program (Overview)
-

e Start by calculating the precondition of main
- If the precondition is True, then program is safe

e Calculate other preconditions and properties
as necessary

e Preconditions and properties are defined
recursively, so take the fixed point

Checking risers
-

risers r = case r of

b -1
X:XS — case Xxs of
b —>&):0
y.etc — case risers (y.etc) of
[] — error “pattern match”
S:SS— case x <y of
True — (X:S) :SS
False — [X] : (s:sS)

Checking risers
-

risers r = case r of

b -1
X:XS — case Xxs of
b —->&):0
y.etc — case risers (y:.etc) of
0 —|error “pattern match”|
S:Ss— case x <y of
True — (X:S):SS
False — [X] : (s:SS)

Checking risers
-

risers r = case r of

re{ll} v
1 -1 xs e {[I} v
X:XS — case xS of risers (y:etc) e {(:) _ _}

0 —> D)
y.etc — case risers (y:.etc) of
0 —|error “pattern match”|
S:SS— case x <y of
True — (X:S) : SS
False — [X] : (s:sS)

Checking risers
-

risers r = case r of re{) }v
1 -1 0e{t)_ o)+
i .V XI) -
X:XS — case xS of c i))

b >

y.etc — case risers (y:etc) of / . {(;/ L_}
] —>[error “pattern match” | B
S:SS— case x <y of ... V (XS) : sS
True — (X:S): SS Sa0)_
False —» [x] : (s:sS) ... Vv [X]:(s:SS)

e {()__3

Checking risers
-

risers r = case r of re{) }v
1 -1 0e{t)_ o)+
i .V XI) -
X:XS — case xS of c i))

b >

y.etc — case risers (y:etc) of / . {(;/ L_}
] —>[error “pattern match” | B
S:SS— case x <y of ... V (XS) : sS
Property: True — (X:S): SS Sa0)_
re{()__}= False>[x]:(s:sS) ..vI[X:(s:sS)

risersr e {() _} e {() __}

Checking risers
-

risers r = case r of

re{ll} v
1 -1 xs e {[I} v
X:XS — case xS of risers (y:etc) e {(:) _ _}

0 —> D)
y.etc — case risers (y:.etc) of
0 —|error “pattern match”|
S:SS— case x <y of
Property: True — (x:s):ss
re{(l)__}t= False — [X] : (s:sS)

rsersre{(:0) }

Checking risers
-

risers r = case r of

re{ll} v
1 -1 xs e {[J} v
X:XS — case xS of y:etc e {(:) __}

0 —> D)
y.etc — case risers (y:.etc) of
0 —|error “pattern match”|
S:SS— case x <y of
Property: True — (x:s):ss
re{(l)__}t= False — [X] : (s:sS)

rsersre{(:0) }

Calculating Preconditions
S

e Variables: pre(x) = True
- Always True

e Constructors: pre(a:b) = pre(a) A pre(b)
— Conjunction of the children

e Function calls: pre(f x) = x € pre(f) A pre(x)
— Conjunction of the children

- Plus applying the preconditions of f
- Note: precondition is recursive

Calculating Preconditions (case)
-]
pre(case on of
] —a
X:XS — b)
= pre(on) A (on ¢ {[]} v pre(a))
A (on ¢ {(:) __}v pre(b))

e An alternative is safe, or Is never reached

Extending Constraints (T)
« .

risers r = case r of
xse{() _ _}v..

1 -1 <(:)-2>e{(:) _}
X:XS — case xs of re{:) () _)}
1 >0
y.etc — ... <()-2>T{() _ 3
{() _ () _ L}

<(:)-1> T {True}
{:) True }

Splitting Constraints (¥)
« .

risers r = case r of cD:De{C) _ Yv..

I True
X:XS — case Xs of (()12) L © 1
0 —>D:0 |)=
y.etc — ... True
(()12) 4 {m
False
() 12) ¥ {(:) True [I}

1 € {True} A 2 € {[]}

Summary so far
S

e Rules for Preconditions

e How to manipulate constraints
_ Extend (T) — for locally bound variables
~ Split (3) — for constructor applications
- Invoke properties — for function application

e Can change a constraint on expressions, to
one on function arguments

Algorithm for Preconditions
c- |
set all preconditions to True

set error precondition to False
while any preconditions change

recompute every precondition
end while

Fixed Point!

e Algorithm for properties is very similar

Fixed Point
«__ 0

e To ensure a fixed point exists demand only a
finite number of possible constraints

e At each stage, (A) with the previous
precondition

e Ensures termination of the algorithm
- But termination # useable speed!

The Basic Constraints
«__ 7

e These are the basic ones | have introduced

e Not finite — but can bound the depth
- A little arbitrary
- Can’t represent infinite data structures

e But a nice simple introduction!

A Constraint System
S

e Finite number of constraints

e Extend operator (T)

e Split operator ()

e notin creation, i.e. x ¢ {(:) _)}

e Optional simplification rules in a predicate

Regular Expression Constraints
-

e Based on regular expressions

@ Xel —>C
— ris aregular expression of paths, I.e. <(:)-1>
— C Is a set of constructors
- True if all r paths lead to a constructor in c

e Split operator (1) is regular expression
differentiation/quotient

RE-Constraint Examples
S

e head xs
- xse(1-{}
e map head xs
- XS € (<(:)-2>* - <(1)-1> > {:})
e map head (reverse Xs)
- XS € (<(:)-2>* - <(0)-1> > {} v
Xs € (<(:)-2>* - {:})

RE-Constraint Problems
«__ 0

e They are finite (with certain restrictions)
e But there are many of them!
e Some simplification rules |
This fact took 2

— Quite a lot (19 so far) .
years to figure
- Not complete out!

e In practice, too slow for moderate examples

Multipattern Constraints
-

e |ldea: model the recursive and non-recursive
components separately

e Given a list
- Say something about the first element
- Say something about all other elements
- Cannot distinguish between element 3 and 4

MP-Constraint Examples
S

e head xs
- xs e ({¢) 3 ={ll,)}

xs must be (:) All recursive tails
XS.<(:)-1> must be _ are unrestricted

e Use the type’s to determine recursive bits

More MP-Constraint Examples
S

e map head xs

- U O AC) 3+l €) D) *
s) QC) 3=l C) D}

e An Infinite list
- {0C) 3 +{C) 2

MP-Constraint “semantics”
«__ 7

MP = {set Val}

Val = | {set Pat} * {set Pat}
Element must satisfy Each recursive part must
at least one pattern satisfy at least one pattern

Pat = Constructor [(non-recursive field, MP)]

MP-Constraint Split

<
 ()12) v{() 3} ={C) {True}}

- An infinite list whose elements (after the first) are
all true

o lec

e 2 c{(:) {True}} = {(:) {True}}

MP-Constraint Simplification
-

e There are 8 rules for simplification
— Still not complete...
e But!

- Xeavxeb=xec union of two sets
- XeaanXxeb=xec cross product of two sets

MP-Constraint Currying
-

e \We can merge all MP’s on one variable

e \We can curry all functions — so each has only
one variable

e MP-constraint Predicate = MP-constraint

()ab > () (a, b)

MP vs RE constraints
«__ 7

e Both have different expressive power
- Neither is a subset/superset

e RE-constraints grow too quickly
e MP-constraints stay much smaller

e Therefore Catch uses MP-constraints

Numbers

c- |
data Int = Neg | Zero | One | Pos

e Checks

~ |Is positive? Is natural? Is zero?
e Operations

- (+1), (-1)
e Work’s very well in practice

Summary so far
S

e Rules for Preconditions and Properties

e Can manipulate constraints in terms of three
operations

e MP and RE Constraints introduced
e Have picked MP-Constraints

Making a Tool (Catch)

Haskell Yhe

In draft paper,

First-order Core see website

- =
—

Curried

Analyse < | This talk

Testing Catch
S

e The nofib benchmark suite, but

main = do(Jarg] <-JgetArgs
print $ primes !! (read)arg)

e Benchmarks have no real users
e Programs without real users crash

Nofib/Imaginary Results (14 tests)

O Trivially Safe

M Perfect Answer
H Good Failures
M Bad Failures

Good fallure:
Did not get perfect answer,
but neither did I!

Bad Failure: Bernouilli

«
tail (tail x)

e Actual condition: list is at least length 2
e Inferred condition: list must be infinite

drop 2 x

Bad Failure: Paraffins
« /0007

radical _generator n = f undefined
where f unused = big_memory_result

e array .. Ixa=(a,a) > [(a, b)] > Array a b
- Each index must be in the given range
- Array indexing also problematic

Perfect Answer: Digits of E2
-

e =
(“2.” ++) $
tail - concat $
map (show - head) $
iterate (carryPropagate 2 - map (10%*) - tail) $
2:[1,1.]

Performance of Catch
«__ 0

Time (Seconds)
O L N W Hd 01 O N O
&

0 200 400 600 800 1000 1200 1400

Source Code

Case Study: HsColour
S

e Takes Haskell source code and prints out a
colourised version

e 4 years old, 6 contributors, 12 modules, 800+
lines

e Used by GHC nightly runs to generate docs
e Used online by http://hpaste.org

Y,
HsColour: Bug 1)(50

o]
data Prefs = ... deriving (Read,Show)

e Uses read/show serialisation to a file
e readFile prefs, then read result

e Potential crash if the user has modified the
file
e Real crash when Pref’s structure changed!

HsColour: Bug 1 Catch
-]
> Catch HsColour.hs
Check “Prelude.read: no parse”
Partial Prelude.read$252
Partial Language.Haskell.HsColour
.Colourise.parseColourPrefs

Full log Is recorded
All preconditions
and properties

Partial Main.main

~1
HsColour: Bug 2 &
<

e The latex output mode had:
outToken (\”:xs) = “ " ++ Init xs ++ “”

o file.hs: “
e hscolour —latex file.hs
e Crash

Y,
HsColour: Bug 3)(50
S

e The html anchor output mode had:
outToken (*':xs) = “<a>" ++ Init Xs ++ “"

e file.hs: ()
e hscolour —html —anchor file.hs
e Crash

Cx,
A
HsColour: Problem 4 /VGQ)

e A pattern match without a [] case
e A nice refactoring, but not a crash

e Proof was complex, distributed and fragile
- Based on the length of comment lexemes!

e End result;: HsColour cannot crash
— Or could not at the date | checked it...

e Required 2.1 seconds, 2.7Mb

Case Study: FiniteMap library

e Over 10 years old, was a standard library
e 14 non-exhaustive patterns, 13 are safe

delFromFM (Branch key ..) del_key

C
C

O

e
e
e

ey >
ey <

KEY =

Key = ...
Key = ...

Key = ...

Case Study: XMonad

e Haskell Window Manager
e Central module (StackSet)
e Checked by Catch as a library

>>=

e No bugs, but suggested refactorings
e Made explicit some assumptions about Num

Catch’s Failings

«]
e \Weakest Area: Yhc

— Conversion from Haskell to Core requires Yhc
- Can easily move to using GHC Core (once fixed)

e 2"d \Weakest Area: First-order transform
— Still working on this
— Could use supercompilation

??-Constraints
o]

e Could solve more complex problems

e Could retain numeric constraints precisely

e |deally have a single normal form

e MP-constraints work well, but there Is room
for improvement

Alternatives to Catch

c- |
e Reach, SmallCheck — Matt Naylor, Colin R
- Enumerative testing to some depth

e ESC/Haskell - Dana Xu
- Precondition/postcondition checking

e Dependent types — Epigram, Cayenne
- Push conditions into the types

Conclusions
« 001

e Pattern matching is an important area that
nas been overlooked

e Framework separate from constraints
— Can replace constraints for different power

e Catch is a good step towards the solution
- Practical tool
- Has found real bugs

	Detecting Pattern-Match Failures in Haskell
	Does this code crash?
	Does this code crash?
	Does this code crash?
	Overview
	The problem of Pattern-Matching
	Haskell programs “go wrong”
	My Goal
	Preconditions
	Properties
	Checking a Program (Overview)
	Checking risers
	Checking risers
	Checking risers
	Checking risers
	Checking risers
	Checking risers
	Checking risers
	Calculating Preconditions
	Calculating Preconditions (case)
	Extending Constraints ()
	Splitting Constraints ()
	Summary so far
	Algorithm for Preconditions
	Fixed Point
	The Basic Constraints
	A Constraint System
	Regular Expression Constraints
	RE-Constraint Examples
	RE-Constraint Problems
	Multipattern Constraints
	MP-Constraint Examples
	More MP-Constraint Examples
	MP-Constraint “semantics”
	MP-Constraint Split
	MP-Constraint Simplification
	MP-Constraint Currying
	MP vs RE constraints
	Numbers
	Summary so far
	Making a Tool (Catch)
	Testing Catch
	Nofib/Imaginary Results (14 tests)
	Bad Failure: Bernouilli
	Bad Failure: Paraffins
	Perfect Answer: Digits of E2
	Performance of Catch
	Case Study: HsColour
	HsColour: Bug 1
	HsColour: Bug 1 Catch
	HsColour: Bug 2
	HsColour: Bug 3
	HsColour: Problem 4
	Case Study: FiniteMap library
	Case Study: XMonad
	Catch’s Failings
	??-Constraints
	Alternatives to Catch
	Conclusions

