
CATCH1: Case and Termination
Checking for Haskell

Neil Mitchell
(supervised by Colin Runciman)

1 Name courtesy of Mike Dodds

Termination Checkers

Q) Does function f terminate?
A) {Yes, Don’t know}

� Typically look for decreasing size
� Primitive recursive
� Walther recursion
� Size change termination

Does this terminate?

fib(1) = 1

fib(2) = 1

fib(n) = fib(n-1) + fib(n-2)

fib :: Integer -> Integer

fib(0) = ⊥NT

Remember the value!

� A function only stops terminating when
its given a value

� Perhaps the question is wrong:
Q) Given a function f and a value x,

does f(x) terminate?
Q) Given a function f, for what values of

x does f(x) terminate?

But that’s wrong…

fib n | n <= 0 =

error “bad programmer!”

� A function should never non-terminate
� It should give an helpful error message
� There may be a few exceptions

� But probably things that can’t be proved
� i.e. A Turing machine simulator

CATCH: Haskell

� Haskell is:
� A functional programming language
� Lazy – not strict

� Only evaluates what is required
� Lazy allows:

� Infinite data structures

Productivity

[1..] = [1,2,3,4,5,6, ...

� Not terminating
� But is productive

� Always another element
� Time to generate “next result” is always

finite

The blame game

� last [1..] is ⊥NT

� last is a useful function
� [1..] is a useful value

� Who is at fault?
� The caller of last

A Lazy Termination Checker

� All data/functions must be productive
� Can easily encode termination

isTerm :: [a] -> Bool

isTerm [] = True

isTerm (x:xs) = isTerm xs

NF, WHNF

� Normal Form (NF)
� Fully defined data structure
� Possibly infinite
� value{*}

� Weak Head Normal Form (WHNF)
� Outer lump is a constructor
� value{?}

� value{*} ⇒ value{?}

last x = case x of

(:) -> case x.tl of

[] -> x.hd

(:) -> last x.tl

(last x){?} = x{[]} v ((x.tl{:} v (x.hd{?})
^ (x.tl{[]} v (last x.tl){?})

(last x){?} = x{[]} v x.tl{[]} v (last x.tl){?}
= x{[]} v x.tl{[]} v x.tl.tl{[]} v …
= ∃i∈L(tl*), x.i{[]}
= x.tl∃{[]}

(last x){*} = (last x){?} ^ (x{[]} v x.tl{[]} v (last x.tl){*})

= x.tl∃{[]}

And the result:

(last x){*} = x{*} ^ x.tl∃{[]}

� x is defined
� x has a [], x is finite

A nice result ☺

Ackermann’s Function
data Nat = S Nat | Z

ack Z n = S n

ack (S m) Z = ack m (S Z)

ack (S m) (S n) = ack m (ack (S m) n)

� (ack m n){?} = m.p∃{Z} ^ m{*} ^ n{*}
� ack 1 ∞ = ? (answer is ∞)
� ack ∞ 1 = ⊥NT

Conclusion

� What lazy termination might mean
� Productivity
� Constraints on arguments
� WHNF vs NF

� Lots to do!
� Check it
� Prove it
� Implement it

	CATCH1: Case and Termination Checking for Haskell
	Termination Checkers
	Does this terminate?
	Remember the value!
	But that’s wrong…
	CATCH: Haskell
	Productivity
	The blame game
	A Lazy Termination Checker
	NF, WHNF
	And the result:
	Ackermann’s Function
	Conclusion

