Buck?2 for OCaml Users and Developers

Shayne Fletcher Neil Mitchell

Meta Platforms Inc.

shaynefletcher@meta.com

OCaml Users and Developers Workshop
August 10, 2023

Roadmap

@ Buck2 overview
@ About
@ Goals, properties & features

A multi-language large-scale build system open-sourced by Meta
https://buck2.build.

Written in Rust over the last 4 years by a team of people.

https://buck2.build

Goal, propetis & features
Multi-language

@ Buck2 has no baked in knowledge of any programming language.

o Configured through Starlark/Python files which say how to build
ocaml_library etc.

@ Rules produce providers that say how they provide stuff.

e E.g. all native languages produce MergedLinkInfo.
e OCaml produces it, Rust can work with it, the system linker can link them.
o Therefore, C++ can depend on Rust which depends on C++.

@ More generally, languages don’t need to know about OCaml to link with it.

Large scale builds

@ Buck2 is designed for large scale (millions of files).
o File watching with wat chman - too many files to check modification time.

@ Bazel compatible remote execution.
e If anyone else has already run a command, just copy.
e Run commands remotely on a server - thousands at a time.
@ Deferred materialisation - if an intermediate product is available remotely,
don’t download it.

Goal, properties & festures
Theoretical power

@ Provides monadic/dynamic dependencies as per Build Systems a la Carte
[1].

@ An OCaml library must have its files compiled in dependency order.

@ Buckl: Run ocamldep once and hope it doesn’t change much.

@ Bazel: specify the internal file dependencies.

@ Buck2: runs ocamldep automatically and follow the dependencies.

o Define the OCaml library dependency node and declare it outputs a . cmxa.
Run the ocamldep tool, producing a text file (Makefile).

Read the output, parsing it (in Starlark) to produce a graph.

Fill OCaml compilation commands into that graph.

Point at where the output file ends up.

Roadmap

© Buck2 for OCaml Development
@ Hello world!
@ Third-party setup
@ Accessing the OCaml toolchain
@ Defining and using PPXs
@ Extending & Embedding
@ "Wrapped” libraries

Buck2 for OCaml Development [sEILRTGIL]

Buck2 OCaml Examples

The referenced examples are from the facebook/buck2 GitHub repository”.

“See the examples/with-prelude/ocaml directory.

https://github.com/facebook/buck2
https://github.com/facebook/buck2/tree/main/examples/with_prelude/ocaml

Buck2 for OCaml Development [sEILRTGIL]

Hello world

Example (Library)

build with: buck2 build //ocaml/hello-world:hello-world-1ib
ocaml_library(

name = "hello-world-1ib",
srcs = ["hello_world_lib.ml" 7],
)
Example (Binary)

build & run with: buck2 run //ocaml/hello-world:hello-world —-—
ocaml_binary (

name "hello-world",

srcs ["hello_world.ml" 7],

deps = [":hello-world-1ib" 1,

Bytecode vs. native

Use the bytecode sub-target to produce OCaml programs built via ocamlc:
@ Run native executable
@ buck2 run ’:hello-world’
@ Run bytecode (standalone) executable
@ buck2 run ’:hello-world[bytecode]’
Use ——show—-output to locate materialized artifacts:
@ buck2 target ’:hello-world’” --show-output
@ buck-out/.../hello_world/_ _hello-world__ /hello-world.opt
@ buck2 target ’':hello-world[bytecode]’ --show-output
@ buck-out/.../hello_world/__hello-world_ _/hello-world

Native rules

The full set of Buck2 prelude OCaml rules:
@ prebuilt_ocaml_library (.cma’,’.cmxa’)
@ ocaml_library (".cma’,’.cmxa’)
@ ocaml_binary (".opt’ or no extension)
@ ocaml_object (".0)

@ ocaml_shared (".cmxs’)!

!Native code plugin suitable for use with the Dynlink module

https://v2.ocaml.org/api/Dynlink.html

Third-party setup
Integrating OPAM

‘th?rd-pow'ty/ ocoml /t% $HOME/ .opam/ default

Buck / b/
OPQM/

stdlib/

oCcoam l/

Figure: Symlinks into .opam

2
2Scripts to help OCaml projects using Buck? facebook/ocaml-scripts.

https://github.com/facebook/ocaml-scripts

Buck2 for OCaml Development [SNNyitie5eridyidlie)

Prebuilt libraries

Example (Defining a prebuilt library)

prebuilt_ocaml_library (

name = "ppxlib",
include_dir = "opam/lib/ppxlib",
native_lib = "opam/lib/ppxlib/ppxlib.cmxa",

Example (Using a prebuilt library)

ocaml_library(
name = "ppx-record-selectors",
deps = ["//third-party/ocaml:ppxlib", ... 1,

VRGO @INIRPEE Manidl Accessing the OCaml toolchain

Parsers, lexers and interfacing with C

Example (Using ocamllex, menhir)

build & run with: buck2 run //ocaml/calc:calc
ocaml_binary (

name = "calc",

srcs = ["calc.ml","lexer.mll", "parser.mly", 1,

Example (Interfacing with C)

ocaml_lbinary (
name = ".,..",

srcs = ["fib.ml", "fib.c", 1,

il VAol RS (dunial Defining and using PPXs

Defining a Ppx

Example (Define "record selectors’)

ocaml_library (

name = "ppx-record-selectors",
srcs = ["record_selectors.ml"],
deps = ["//third-party/ocaml:ppxlib"

)

ocaml_binary (

name = "ppx",

srcs = ["ppx_driver.ml"],
compiler_flags = ["-linkall"],
deps = [":ppx-record-selectors", 1,

1,

Deriving.Generator

Deriving.Generator

94 let _ = Deriving.add "record_selectors"
type_decl:intf_generator

85

92 let impl_generator =
93 let intf_generator =

Figure: 'record_selectors.ml’

10 let () = Ppxlib.Driver.standalone ()

Figure: "ppx_driver.ml’

Deining and using PPXs
Using a Ppx

type t = {
foo: dint;
bar: string;

Inspecting preprocessed source
g
p Cababl B Sl Use the ‘expand’ sub-target to make the

let r: t = { foo = 4; bar = "quux" } 1
1:1: (): unit = Printf.printf ?' %s\n" (foo r) (bar r) .elabora.ted program teXt aVallable fOI'
Inspection (g

buck2 build //ocaml/ppx:’ppx-record-selectors—-test[expand]’).

Figure: ‘ppx_record_selectors_test.ml’

Example (Use "record selectors”)

ocaml_binary (
name = "ppx-record-selectors-test",
srcs = ["ppx_record_selectors_test.ml"],
compiler_flags = ["-ppx", "S$(exe_target :ppx) -—-as-ppx" 1,

VAR @I Montti (8l Extending & Embedding

Embedding

Example (OCaml)
ocaml_object (
name = "fib-ml",
srcs = ["fib.ml"]

Example (C++)

cxx_binary (

name = "fib-cpp",
srcs = ["fib.cpp"],
deps = [":fib-ml",

User defined primitive written in
OCaml...

Figure: "fib.ml’

... linked with and called from C++.

Figure: "fib.cpp’

Btending & Embedcing
Extending

User defined primitive, written in Rust...

Example (Rust)

rust_library (

name = "hello-stubs-rs",
Figure: ’hello,stubs.rs' srcs = ["hello_stubs.rs" 7,
)
... linked with and called from OCaml.
L} let () = print,hello.{) v e o Example (Ocaml)
ocaml_bpinary (
Figure: "hello.ml’ name = "hello-rs",

srcs = ["hello.ml"],

deps = [":hello-stubs-rs"],

Buck2 for OCaml Development AU E ool KR E1a T

‘mylib.mli": alias map

10 module A

11 module B

‘mylib__A.ml’ implements A

10 let () = B.print_hello ()

‘mylib__B.ml” implements B

10 let () = Printf.printf "Hello world!\n"

Exercising mylib functions requires qualified syntax ("test_Mylib.ml’):

10 let _: unit = Mylib.A.print_hello ()

“Wrapped” ibrares
mylib targets

export_file (name = "mylib.mli", src = "mylib.mli")

ocaml_library(

name = "mylib_ ",
srcs = ["mylib.ml", ":mylib.mli"],
compiler_flags = ["-no-alias-deps", "-w","-49"],

ocaml_library (

name = "mylib",

srcs = ["mylib_ A.ml", "mylib_ B.ml"],

compiler_flags = ["-no-alias-deps", "-w","-49", "-open","Mylib"],
ocamldep_flags = ["-open", "Mylib", "-map","$(location :mylib.mli)"],

deps = [":mylib_ "],

Roadmap

© Buck2 vs Dune
@ Performance comparisons

BRUVREIDILTIN Performance comparisons

Pyre

Pyre is a typechecker for Python with = 300 files. With Buck2, a build can be obtained from a full remote cache in /= 12s. Tests on a 72 core VM:

Tool | Time | RSS
Dune 4m?25s 377KB
Buck2 3m09s 180KB

Table: Dev, single thread

Tool | Time | RSS
Dune 7m54s 480KB
Buck2 7m1ls 180KB

Table: Release, single thread

Tool | Time | RSS
Dune Omb51s 377KB
Buck2 0m33s 180KB

Table: Dev, default thread settings

Tool | Time | RSS
Dune 3mb56s 377KB
Buck2 4m23s 178KB

Table: Release, default thread settings

BRUVREIDILTIN Performance comparisons

Flow

Flow is a multi-purpose binary for JavaScript language services with ~ 1000 files. With Buck2, a build can be obtained from a full remote cache in /2 12s. Tests on
a 72 core VM:

Tool ‘ Time Tool ‘ Time
Dune 4m38s

Dune Om41s
Buck2 6m33s

Buck2 0m59s

Table: Dev, single thread Table: Dev, default thread settings

Tool | Time Tool | Time
Dune ‘ 4m56s

Dune 1m35s
Buck2 9m33s

Buck2 2m42s

Table: Release, single thread Table: Release, default thread settings

Questions? Comments?

Roadmap

© Questions? Comments?

Meta Open Source

Bibliography

Roadmap

© Bibliography

Bibliography

References

El Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones.
Build systems a la carte.
In Proceedings of the ACM on Programming Languages, Volume 2 Issue ICFP,
2018.

	Buck2 overview
	About
	Goals, properties & features

	Buck2 for OCaml Development
	Hello world!
	Third-party setup
	Accessing the OCaml toolchain
	Defining and using PPXs
	Extending & Embedding
	"Wrapped" libraries

	Buck2 vs Dune
	Performance comparisons

	Questions? Comments?
	Bibliography

