
© Neil Mitchell 2004 1

A New Parser

Neil Mitchell

© Neil Mitchell 2004 2

Disclaimer

� This is not something I have done as
part of my PhD

� I have done it on my own
� I haven’t researched other systems
� Its not finished
� Any claims may turn out to be wrong

© Neil Mitchell 2004 3

Overview

� What is parsing?
� What systems exist?
� What do you want to parse?
� What is my system?
� Why is mine better (or not)?
� How do you interact with a parser?

© Neil Mitchell 2004 4

Parsing is a function

� From Text to Abstract Syntax Tree
� Parse :: String -> Tree(Token)
� How?

� Hand coded
� Using Lex/Yacc (or Flex/Bison)
� Parser combinatiors
� Etc…

© Neil Mitchell 2004 5

What Systems Exist?

� Lex/Yacc – the classic
� Created to write parsers for C
� Steps

� Write a grammar file, including C code
� Generate a C file
� Compile C file
� Link to your code

© Neil Mitchell 2004 6

Lex

� Lex :: String -> List(Token)

Uses Regular Expressions to split up a
string into various lexemes.

Runs in O(n), using Finite State
Automata.

© Neil Mitchell 2004 7

Yacc

� Yacc :: List(Token) -> Tree(Token)

Based on a BNF grammar.
Runs in just over O(n), using an LALR(1)

stack automaton.
Often fails unpredictably…

© Neil Mitchell 2004 8

Early

� Early :: List(Token) -> Tree(Token)

Almost identical to Yacc, but removes the
unpredictable failures, requiring less
knowledge of LALR(1)

A fair bit slower, worst case of O(n3) or
O(n2.6) depending on implementation.

© Neil Mitchell 2004 9

Parser

� ParserC = Yacc . Lex
� ParserHaskell = Happy . Alex
� ParserJava = …

Very language dependant, Yacc/Lex both
tied to C

© Neil Mitchell 2004 10

Bad points

� Language dependant
� Yacc – shift/reduce conflict
� Not CFG
� Not very intuitive to write Yacc

� Summary: Lex good, Yacc bad

© Neil Mitchell 2004 11

What do you want to parse?

� Languages: Haskell, C#, Java
� Configurations: INI, XML
� Grammar files for this tool
� NOT: Perl, Latex, HTML, C++

� Insane syntax
� Horrid history
� Twisted parody of languages

© Neil Mitchell 2004 12

Brackets, Strings, Escapes

� Brackets () [] {} <> - Yacc
� Strings “” ‘’ – Lex
� Are strings not brackets, just which

disallow nesting?
� What about escape characters?

� Parse them in Lex: “((\.)|.)*”
� Re-parse them later

© Neil Mitchell 2004 13

My System

� Bracket :: String -> Tree(Token)
� Lex :: String -> List(Token)
� Group :: Tree(Token) -> Tree(Token)

� Parser :: String -> Tree(Token)
� Parser = Group . map Lex . Bracket

© Neil Mitchell 2004 14

Bracket

� Match brackets, strings, escape chars
� Define nesting
main = 0 * all [lexer]
all : round string
round = "(" ")" all
string = "\"" "\"" escape [raw]
escape = "\\" 1

© Neil Mitchell 2004 15

Lex

� Same as traditional Lex, but…
� Easier – no need to do string escaping
� Can be different for different parts

� In comments use [none]
� In strings use [raw]
� Can have many lexers for different parts

© Neil Mitchell 2004 16

Lex (2)

keyword = `[a-zA-Z][a-zA-Z0-9_]*`
number = `[0-9]+`
white = `[\t]`
star = "*"
eq = "="
for.
while.

© Neil Mitchell 2004 17

Group

� Group :: Tree(Token) -> Tree(Token)
� Id :: a -> a

� Therefore "Group = Id" works

� Sometimes you need a higher level of
structure, what the brackets mean

� The most complex element
(unfortunately)

© Neil Mitchell 2004 18

Group (2)

root = main[*{rule literal}]

rule = line[keyword eq {regexp string}]

literal = line[keyword dot]

© Neil Mitchell 2004 19

Summary of BLG

� Complete lack of embedded C/Haskell
� Data format defined generically

� Can be Haskell linked list
� Can be C array
� There is an XML format defined

� Similar in style to each other
� All "simple" langauges

© Neil Mitchell 2004 20

Implementation

� Bracket
� Deterministic Push down stack automata

� Lex
� Steal existing lex, FSA

� Group
� FSA? Maybe…
� Have a sketched automaton

© Neil Mitchell 2004 21

Implementation (2)

� I have implemented most of it in C#
� Slow, but very useable
� Bracket seems pretty perfect
� Lex uses Regex objects, but works
� Group is less complete, uses

backtracking, doesn't have maximal
munch semantics, NP, etc.

© Neil Mitchell 2004 22

Implementation (3)

� BLG is self-parsing ☺
� 1 Lex file for all 3
� 1 Bracket file for all 3
� 3 Group files, one each

� Reuse is good

© Neil Mitchell 2004 23

Interaction

� How do you interact with a parser?
� Yacc/Lex

� Translate, Compile, Link, Execute

� BLG
� Translate, Compile, Link, Execute
� Compile into resource file
� Load at runtime (Text Editors)

© Neil Mitchell 2004 24

Exclamations!

� BLG defines a complete set of
exclamations which allow for code
hoisting and deleting

� Remove tokens from the output (white
space/comments)

� Promote tokens, i.e. line![x] returns x
� Simple, but ignored here

© Neil Mitchell 2004 25

$Directives

� In the Bracket, before any processing
� Stream processing directives
� $text (remove '\r', append '\n')
� $tab-indent (for Haskell/Python)
� $upper-case
� Easy, simple, generic, reusable

© Neil Mitchell 2004 26

Advantages

� Language neutral
� Haskell parsing

� GHC in Haskell
� Hugs in C
� Could now use the same grammar

� Can reuse elements, i.e. Lex and
Bracket are almost identical for C#/Java

© Neil Mitchell 2004 27

But best of all

� The grammars are really easy to specify
� A bit of a leap
� Would need years of hypothesis testing
� And maybe even a working implementation

� Faster
� Almost irrelevant, thanks to faster

computers

© Neil Mitchell 2004 28

Questions?

What did I explain badly?
I would really appreciate any feedback!
Should I ditch the entire idea?
Should I implement it?
Should I give up my PhD to sell this

system?

	A New Parser
	Disclaimer
	Overview
	Parsing is a function
	What Systems Exist?
	Lex
	Yacc
	Early
	Parser
	Bad points
	What do you want to parse?
	Brackets, Strings, Escapes
	My System
	Bracket
	Lex
	Lex (2)
	Group
	Group (2)
	Summary of BLG
	Implementation
	Implementation (2)
	Implementation (3)
	Interaction
	Exclamations!
	$Directives
	Advantages
	But best of all
	Questions?

