
Hoogle Overview

by Neil Mitchell 〈ndmitchell@gmail.com〉

This article gives an overview of the Hoogle tool. We describe the history of Hoogle,

the improvements that have been made this summer, and plans for future features.

Finally, we discuss the design guidelines of Hoogle 4 – which may be of interest

both to budding Hoogle developers and other Haskell projects. This article does not

cover the theoretical background of Hoogle.

To try Hoogle online visit http://haskell.org/hoogle.

Introduction

To quote from the Cabal description:

“Hoogle is a Haskell API search engine, which allows you to search
many standard Haskell libraries by either function name, or by ap-
proximate type signature.”

To explore what Hoogle is, and how it can be used, let’s expand on some of
those phrases:

Haskell Hoogle is written in Haskell, and is designed for Haskell programmers.

search engine Hoogle is a tool for searching, in a similar vein to Google. 1

API Hoogle searches API’s, or “Application Programmer Interfaces” – the types
and functions provided by a package.

standard libraries By default, Hoogle will search the libraries that are shipped
with most Haskell compilers. These libraries include base, array, time, mtl
etc.

1Hoogle has no affiliation to Google, and the name is intended as a homage.



The Monad.Reader Issue 12: Summer of Code Special

Figure 1: Hoogle web use.

function name Searches can be performed by name, searching for substrings of
function names. One use of Hoogle is as a fast index into Haddock docu-
mentation.

type signature Searches can be performed by type signature, searching for func-
tions of the appropriate type.

approximate Hoogle tries to find the results you want, even if they don’t quite
match your actual search.

There are three main methods of using Hoogle:

Web Interface The web interface is just like a normal web search engine, requiring
no special software or installation. Just visit the website and enter your
search terms. An example of the web interface is shown in Figure 1.
URL: http://haskell.org/hoogle/

Command Line The command line tool can be downloaded from Hackage [1], and
installed using the standard Cabal commands [2]. The command line tool
has more options, and allows searches to be performed while offline. An

28



Neil Mitchell: Hoogle Overview

Figure 2: Hoogle command line use.

example session is shown in Figure 2.
URL: http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hoogle

Lambdabot Interface When using Lambdabot [3], you can invoke the Hoogle
plugin with @hoogle.

Version History

Hoogle is now over four years old, and has undergone four complete rewrites. This
section describes each version.

Version 1

I started work on the original version of Hoogle before I started my PhD, with
only basic Haskell knowledge, and long before I had ever encountered a Monad.
Realising that my PhD was likely to be dominated by Haskell, I decided to develop
a tool to help beginners (such as myself) find some of the useful functions located
in the standard libraries. While learning Haskell I had watched experienced pro-
grammers take my code and simplify it significantly, by using some clever function
whose existence I was unaware of. I wanted to perform the same tricks!

The initial version of Hoogle was web based, and relied on client-side Javascript
to perform searches. The use of Javascript was unavoidable for a client-side web
program, but even with my limited Haskell experience I longed for proper algebraic
data types, pattern-matching and type-safety. The list of functions was obtained
from the ZVON Haskell Reference [4], who kindly provided all their function data

29



The Monad.Reader Issue 12: Summer of Code Special

in XML, for anyone to use. Hoogle worked, but suffered from huge page load times
(it had to transfer 8MB of data), and wasn’t particularly easy to use.

Version 2

Once I started my PhD I was exposed to lots of Haskell, and decided to rewrite
Hoogle in Haskell. Originally version 2 was a direct port of version 1 to Haskell,
with the searching logic moved to a server-side CGI program. However, once
Hoogle was written in Haskell it became much easier to explore type searching,
treating types as algebraic data structures. As soon as version 2 was placed on
the web, members of the #haskell IRC channel [5] began to use and discuss
it. The feedback and encouragement provided by #haskell resulted in many
improvements.

Version 2 was my first real experience at programming a large Haskell project,
and it showed. The code was poorly organised. The parser could easily be crashed
by entering malformed searches. Many features were littered throughout the code,
without clear isolation. Much of the code failed to make use of the standard
functional idioms. Eventually I reached the stage where every improvement became
an increasingly large amount of work, and became more likely to conflict with an
existing feature.

Version 3

The goal of version 3 was to improve the code so that features could be added
easily. Hoogle 3 was always intended to be the definitive version, which would be
modified, but never rewritten from scratch. The ZVON function list was replaced
with information extracted from Haddock [6], which allowed all of the hierarchi-
cal libraries to be searched. The experience of writing version 2 provided many
insights, which were incorporated. A log of all the searches performed was used to
determine where Hoogle didn’t match the users expectations. The end result was
a more polished tool.

However, version 3 was still insufficient in many ways – the most obvious design
flaw was the inability to search for higher-kinded type classes, of which Monad
is by far the most common. The other problem was scalability, Hoogle 3 scaled
linearly in the number of functions available, which worked fine on a small function
database, but became a problem when attempting to search more libraries.

Version 4

After submitting my PhD, I spent the summer working on Hoogle, sponsored by
the Google Summer of Code. Once again, version 4 was a complete rewrite. The

30



Neil Mitchell: Hoogle Overview

largest change is that instead of using a text file containing a list of functions,
version 4 uses a binary database. This change allows Hoogle to perform searches
faster, and to scale better as more functions are added to the database.

By storing some precomputed information, searches can be made faster. For
example, if the database included the answer for all queries of length 5 and below,
these searches could be answered very quickly. However, the database would also
grow unacceptably large. Version 4 required many trade-offs, choosing the right
representation to maximise search speed and minimise database size. For example,
text searching in version 3 has time complexity O(m · n), where n is the number
of functions and m is average length of a function name. Early releases of version
4 used a trie and required only O(m) to find all the results, but at the cost of a
large database. The current version requires O(m · log n) to find the answers which
match the prefix of the search, then uses heuristics to find additional answers
quickly – although with a time complexity of O(m · n).

The Future

I hope that version 4 will be the last ever rewrite of Hoogle. Now there is a stable
base to work from, the hope is that additional features can be added neatly. Some
of the planned features are given in this section, but none have any timescale given.

Index Hackage

Hoogle currently doesn’t index all the packages available on Hackage, but it should.
The work done for version 4 has enabled Hoogle to scale to the necessary number
of packages, so hopefully Hoogle requires no changes. However, before a package
can be indexed by Hoogle it must have documentation generated by Haddock,
and this has proved a stumbling block. To install all of Hackage is a challenge,
and to do so on my ailing Windows machine is an impossibility. Hackage already
generates Haddock documentation for all packages, and once this process has been
revamped, hopefully Hoogle information can be generated at the same time.

Hoogle Local

Hoogle Local is a graphical user interface to Hoogle, giving the same interface
as the web version, but operating offline. Hoogle Local allows users to locally
install API databases, customise Hoogle to a greater degree, and doesn’t require
an internet connection – but provides the same user friendly interface as the web
version. This feature has been partially implemented, making use of Firefox 3 as

31



The Monad.Reader Issue 12: Summer of Code Special

an XULRunner host. The development version is useable but lacks the necessary
polish to release more widely.

Multilingual Hoogle

Hoogle is currently focused on Haskell, with support for most GHC type system
extensions. But internally, Hoogle does not support all of Haskell’s advanced
type features – multi-parameter type classes are not supported directly, but are
translated into single-parameter type classes. A more accurate description might
be that Hoogle supports searching over a core type language, which Haskell’s
type language is translated into. We suspect that other programming languages
could also be translated into Hoogle’s type system. There are three classes of
programming languages that Hoogle might support:

◮ Languages based on the Hindley-Milner type system. Some of these lan-
guages have type systems which are a subset of Haskell. These languages
should permit a fairly straightforward translation – obvious examples include
ML and Clean.

◮ Strongly typed languages, typically object oriented. F# has shown that a
functional language can interface with object-oriented languages in a reason-
ably natural way, by adding some features and by translating others. Hoogle
could use some of the same ideas, and expand to search languages such as
Java and C#.

◮ Untyped languages, typically scripting languages. Languages such as Perl,
Python and Javascript don’t have any formal types in their interfaces, but
often there is some notion of what subset of values should be passed to which
function – sometimes encoded as a runtime check. This information could
be used to give approximate types to functions, and allow Hoogle searching.

Hopefully one day Hoogle will be a general purpose programming language
search engine, that works well for both Haskell and other programming languages.

Design Guidelines

This section explains the guidelines used for organising the Hoogle codebase. This
information is intended to serve both as a reference to budding Hoogle developers,
and as my current view of best practices in large-scale Haskell development. Hoogle
has been rewritten from scratch four times, each time incorporating knowledge
gained from previous attempts, and iteratively improving the code layout. Some
of these lessons may apply to other projects, and help avoid painful rewrites!

32



Neil Mitchell: Hoogle Overview

Structure your code as a library

Hoogle is a program, but is structured as a library, with client programs which
make use of the library. Any code within the Hoogle module tree is part of the
library, and is carefully checked to expose a sensible interface. Each client which
makes use of Hoogle has its own top-level module. For the purposes of deployment,
there is no library, but if the need arises an explicit library can easily be added.
By forcing a split between the underlying functionality and the user interface, and
by imagining other potential users of the library, we gain a cleaner separation of
concerns.

Put types in their own module

All the data type definitions are placed in a module of their own, at the bottom
of the import hierarchy. For example, type signatures are defined in the module
Hoogle.TypeSig.Type. This module also contains basic utility functions (isTypeApp,
fromTypeApp) and instances (Eq, Show). I have found that by separating out data
type definitions, it is much easier to avoid mutual recursion between modules.

Group operations on a type

All basic operations on a type share the same module prefix. For example, opera-
tions on type signatures are given module names such as Hoogle.TypeSig.Parse and
Hoogle.TypeSig.Render, each responsible for one particular operation. For mod-
ules wishing to use type signatures there is Hoogle.TypeSig.All which imports and
re-exports all the modules within Hoogle.TypeSig, usually with a more restrictive
export list. The intention is that no module outside of Hoogle.TypeSig should
ever import a module other than .All. Many internal details can be hidden from
the users of type signatures, which are useful to expose to the operations on type
signatures.

Originally the .All module was simply called Hoogle.TypeSig – which seems like
a more natural choice. However, having the .All module in the same directory as
the other related modules is beneficial, and makes it easier to keep the modules
in sync. Additionally, it becomes easy to spot when a module from a different
module prefix imports something in violation of the guidelines.

Use a hierarchy

Hoogle is structured as a library, with Hoogle.All exporting all the definitions that
a client may wish to use. Anything exported from this module is intended as a
permanent interface, and is relatively stable. Unfortunately, often clients of the

33



The Monad.Reader Issue 12: Summer of Code Special

Hoogle library need access to more specific details – details that are semi-stable,
but which are not ready to form part of the standard interface. By letting clients
import modules such as Hoogle.TypeSig.All, the official interface avoids getting
polluted, but the features can be still implemented.

Over time I hope that clients importing modules other than Hoogle.All will de-
crease, as proper thought is given to the interface, and the right abstractions are
identified. By allowing greater flexibility the hope is that long-term maintenance
will not be hampered by the pressing need to add one particular feature.

Provide one executable

Version 3 had four executable programs – one to generate ranking information, one
to do command line searching, one to do web searching, and one to do regression
testing. Version 4 has one executable, which does all the above and more, con-
trolled by flags. There are many advantages to providing only one end program – it
reduces the chance of code breaking without noticing it, it makes the total file size
smaller by not duplicating the Haskell run-time system, it decreases the number of
commands users need to learn. The move to one multipurpose executable seems
to be a common theme, which tools such as darcs and hpc both being based on
one command with multiple modes.

Conclusion

Hoogle is not yet finished. In addition to the future tasks given in this article, there
are plenty of suggestions and bugs outstanding, most of which are documented in
the bug database (http://code.google.com/p/ndmitchell/issues/list). Some bugs are
marked as beginner, meaning they can be easily tackled by someone new to Hoogle
– and in some cases someone new to Haskell. If anyone wants to help, please email
me at ndmitchell@gmail.com.

As the task of programming goes from one of painting on a blank canvas, to one
of plumbing together existing components, Haskell has a distinct advantage with
its high-level abstractions. As the number of libraries increases, finding the right
functionality becomes harder. Hoogle aims to help by providing a simple way to
find the right functions.

Acknowledgements

Hoogle has benefited greatly from feedback, encouragement, technical contribu-
tions, bug reporting and more. Versions 2 and 3 were helped substantially by
many members of the functional programming group at York University, and the

34



users of #haskell. While writing version 4 I was mentored by Niklas Broberg,
received lots of help from Duncan Coutts, and was funded by Google through
the haskell.org project. Hoogle has benefited from substantial contributions from
David Waern, Don Stewart, Emily King, Esa Ilari Vuokko, Gaal Yahas, Ganesh
Sittampalam, Gwern Branwen, Henk-Jan van Tuyl, Mike Dodds, Thomas Davie,
Thomas Jäger, Tillmann Rendel and Udo Stenzel.

References

[1] Hackage. http://hackage.haskell.org/packages/hackage.html.

[2] Cabal. http://haskell.org/cabal/.

[3] Lambdabot. http://www.haskell.org/haskellwiki/Lambdabot.

[4] ZVON Haskell Reference. http://www.zvon.org/other/haskell/Outputglobal/

index.html.

[5] Haskell IRC Channel, #haskell. http://www.haskell.org/haskellwiki/IRC_

channel.

[6] Haddock. http://haskell.org/haddock/.

http://hackage.haskell.org/packages/hackage.html
http://haskell.org/cabal/
http://www.haskell.org/haskellwiki/Lambdabot
http://www.zvon.org/other/haskell/Outputglobal/index.html
http://www.zvon.org/other/haskell/Outputglobal/index.html
http://www.haskell.org/haskellwiki/IRC_channel
http://www.haskell.org/haskellwiki/IRC_channel
http://haskell.org/haddock/

	Wouter Swierstra: Editorial
	Max Bolingbroke: Compiler Development Made Easy
	Roman Cheplyaka: How to Build a Physics Engine
	Neil Mitchell: Hoogle Overview

