
Deriving Generic Functions by Example

Neil Mitchell

University of York, UK
http://www.cs.york.ac.uk/~ndm/

Abstract. A function is said to be generic if it operates over values of
any data type. For example, a generic equality function can test pairs of
booleans, integers, lists, trees etc. In most languages programmers must
define generic functions multiple times, specialised for each data type.
Alternatively, a tool could be used to specify the relationship between the
data type and the implementation, but this relationship may be complex.
This paper describes a solution: given a single example of the generic
function on one data type, we can infer the relationship between a data
type and the implementation. We have used our method in the Derive
tool, allowing the implementation of 60% of the generic functions to be
inferred.

1 Introduction

Haskell [10] is a modern functional programming language. In Haskell a generic
function can be defined using a type class [12] (using the class keyword), and
implementations can be provided for specific types (using the instance keyword).
Generic equality is defined by the Eq class:

class Eq α where
(≡) :: α → α → Bool

The Eq class has an operator, (≡). All types that are instances of the class
Eq have the (≡) operator available. We can define a Haskell data type, along
with an instance for Eq, as follows:

data WritingImplement = Pencil -- a pencil
| Pen Colour -- a pen, plus its colour

instance Eq WritingImplement where
(Pencil) ≡ (Pencil) = True
(Pen x ) ≡ (Pen y ) = x ≡ y

≡ = False

The data type we introduce is WritingImplement. A WritingImplement is ei-
ther a pencil, or a pen with a colour. Pencil and Pen are referred to as data
constructors. The first line of the Eq instance says that any two Pencil values
are equal. The second line says that for two Pen values to be equal, their colour



data DataName = First
| Second Any
| Third Any Any
| Fourth Any Any

Fig. 1. The DataName data type.

fields must be equal. The final line says that any remaining pairs of values are
not equal. Any instance of Eq follows naturally from the data structure: for two
values to be equal they must have the same constructor, and all their fields must
be equal.

Writing an Eq instance for one data type is simple. However, as the complex-
ity and number of data types increases, so does the effort required. The standard
solution is to express the relationship between any data type and the instance
that corresponds to it, which we call an instance generator. In standard tools
such as DrIFT [13], the author of an instance generator must be familiar with
both the representation of a data type, and various code-generation functions.
The result is that specifying an instance generator is not as straightforward as
one might hope.

Using the techniques described in this paper, instance generators can often be
automatically inferred from a single example instance. To define all Eq instances,
an example must be given on the DataName type, provided by a library (see
Figure 1):

instance Eq DataName where
(First ) ≡ (First ) = True
(Second x1 ) ≡ (Second y1 ) = x1 ≡ y1 ∧ True
(Third x1 x2 ) ≡ (Third y1 y2 ) = x1 ≡ y1 ∧ x2 ≡ y2 ∧ True
(Fourth x1 x2 ) ≡ (Fourth y1 y2 ) = x1 ≡ y1 ∧ x2 ≡ y2 ∧ True

≡ = False

The DataName instance follows the same pattern as for WritingImplement,
but with the addition of ∧ True, whose purpose is explained in §2.3.

This paper contributes a method for inferring a relationship between a value
and a piece of program code, without resorting to unguided search. In our experi-
ence, over 60% of Haskell class instances can be determined using this technique.

1.1 Roadmap

This paper first describes how to derive instance generators automatically in §2.
§3 discusses which generic functions are applicable for this scheme, and §4 gives
a more complex example. §5 presents related work, before §6 concludes.



2 The Method

The central idea of automatic inference of instance generators is that an instance
generator is a function from a data type D, to a piece of code C, namely gen::D →
C. By applying gen to a specific data type, the appropriate code will be generated.

2.1 Data Type Fragments

Rather than infer the entire gen function in one step, we instead infer many
functions from D to each element of C’s abstract syntax tree, then combine
them to form gen. Each smaller function may depend only on some fragment of
the data type – for example one particular line may depend on one particular
data constructor, rather than the entire data type. A fragment of a data type
may be one of the following:

A constant: A node of the abstract syntax tree can be a constant, meaning
that in all cases it will generate the same value. In the Eq example things
such as True, (≡), (∧) etc. are constant. Anything which does not have an
alternative generation function is assumed to be constant.

A number: The code x1 is parameterised by the number 1. We use the notation
1 7→ x [[#]] to denote the function, where # is the parameterised number, and
1 is the parameter. Any detected number is either a parameterised value, or
a constant.

A constructor: The code Third is parameterised by the constructor Third, be-
ing the name of the constructor. We use the notation Third 7→ [[ctorname]] to
denote this function.

A data type: In the first example the whole code is parameterised by the
data type. One particular place parameterised directly on the data type
is Eq DataName, which becomes DataName 7→ Eq [[dataname]]. If the name of
the data type changes to WritingImplement, then the function will generate
Eq WritingImplement instead.

2.2 The Map Pattern

The examples shown previously map data type fragments to fixed-sized portions
of the abstract syntax tree. But consider the pattern (Third x1 x2 ), we require n
variables, where n is the arity of the constructor. To solve this problem, we can
construct a generalised map from a list of generation functions. This construction
requires two conditions: (1) one item of the list has a function which generates
all abstract syntax trees in the list; (2) their parameter values are sequential –
either consecutive integers or constructors in their definition order.

[1 7→ x [[#]], 2 7→ x [[#]]]

Take the above list of functions. Picking either function, when applying it
to the other parameter, we obtain the correct value. The parameters are clearly
sequential. We can rewrite this list using a map as:



2 7→ [[map [1..#] (x [[#]])]]

map takes two arguments, a range of items to use as the parameter, and
an expression. Within the second argument, # is bound to each number in the
range in turn. The resultant function is parameterised by the highest number
in the sequence. We can also have a map which operates over constructors, in
which case the resultant map is parameterised by the entire data type.

The following two examples cannot be generalised to a map:

[1 7→ x [[#]], 3 7→ x [[#]]]
[1 7→ x [[#]], 2 7→ y [[#]]]

In the first, the parameters are not sequential. In the second, neither function
produces the correct result on both items.

The map pattern provides the key power to generalising an example from one
specific data type, to any data type. In order to increase the chance of finding
a suitable generalisation, we allow each node in the abstract syntax tree to be
represented by a list of possible parameterised functions [11].

2.3 The Fold Pattern

One common pattern in programming is the fold [4]. Consider the Eq example
from before. If we move to using prefix notation for (∧) and explicit bracketing
we obtain:

(Third x1 x2 ) ≡ (Third y1 y2 ) = (∧) (x1 ≡ y1 ) ((∧) (x2 ≡ y2 ) True)
-- or, expressed as a fold

(Third x1 x2 ) ≡ (Third y1 y2 ) = foldr (∧) True [x1 ≡ y1 , x2 ≡ y2 ]

The original structure is not a list, and would not be found as a map. How-
ever, we can convert this function to a fold, recovering a list structure. A fold
takes a list, and replaces each cons by a function (i.e. (∧)) and the nil by a value
(i.e. True). By automatically converting the code to use fold, a map is recovered.
Using a foldr rule (fold associating to the right), the result of the right hand
side is:

2 7→ [[foldr (∧) True [[map [1..#] (x [[#]] ≡ y [[#]])]]]]

The foldr rule is a foldr function, but applied at generation time. The fold
encoding explains the redundant ∧ True at the end of each line in the Eq example.
In order for the base case (True) to share the same fold definition as above, we
require a redundant conjunct. In the code generated for instances ∧ True is
removed, using algebraic simplification.

2.4 Eliminating Number Parameters

Initially functions may be parameterised by the whole data type, constructors or
numbers. The map rule converts a list of functions parameterised by construc-
tors to a function parameterised by the whole data type, but leaves numbers



parameterised by numbers. A number parameter is replaced by a constructor
with a relationship to that number. Taking the example of x1 x2 from earlier,
we can write any of:

2 7→ [[map [1 . . # ] (x [[#]])]]
Third 7→ [[map [1 . . ctorarity ] (x [[#]])]]
Third 7→ [[map [1 . . ctorindex ] (x [[#]])]]
Fourth 7→ [[map [1 . . ctorarity ] (x [[#]])]]

Instead of parameterising by the number 2, we can parameterise by a con-
structor. The number 2 can be obtained in three ways: it is both the arity, and
zero-based index of Third, and also the arity of Fourth.

2.5 Combining Generation Functions

The calculation of generation functions proceeds in a bottom-up manner. Once
all the children of a node in the abstract syntax tree have generation functions,
they are combined to form a generation function for the whole node. A set of
child generation functions can only be combined if all the non-constant functions
share the same parameter. For example:

(Third 7→ [[ctorname]]) (Third 7→ [[map [1 . . ctorarity ] (x [[#]])]])
-- becomes

Third 7→ [[ctorname]] [[map [1 . . ctorarity ] (x [[#]])]]

2.6 The Result

After applying the rules, the resultant function for the Eq example is:

instance Eq [[dataname]]where
[[map ctors (

([[ctorname]] [[map [1 . . ctorarity ] (x [[#]])) ≡
([[ctorname]] [[map [1 . . ctorarity ] (y [[#]])) =
[[foldr (∧) True [[map [1 . . ctorarity ] (x [[#]] ≡ y [[#]])]]]]

)]]
≡ = False

Applying this function to WritingImplement will produce the instance we
originally specified. Writing the generation function directly poses a number
of difficulties:

1. There is no available language in which to write a generator. The DrIFT
preprocessor [13] allows a generator to be specified, but requires the author
to learn many new library functions.

2. Details such as the associativity of (∧) can be omitted from an example, but
are required when expressing a foldr directly.

3. Manually written generators may not produce type-safe instances.
4. The results of a manual generator require testing against examples.
5. The complexity, compared to a single example, is much higher.



3 Limitations of Automatic Derivation

The instance generation scheme given is not complete – there exist instances
whose generator cannot be determined. The Derive tool [9] is a program for gen-
erating instances for user defined data types. Of the 24 instances supported by
the Derive tool, 15 are expressed by example, while 9 require manually written
instance generators. There are several reasons some instances cannot be deter-
mined:

Non-inductive definitions: For example, the Binary class serialises a value to
disk. For each value, a tag is written to indicate the constructor. If a data
type has only one constructor, the tag is omitted. These instances are not
inductive – the single constructor does not follow the same pattern.

Type-based definitions: For example, the Monoid class requires items of the
same type to be processed using mappend, but items of a different type use
mempty. Automatic derivation has no notion of type-specific behaviour.

Record-based definitions: Haskell provides records, which allow fields to be
labelled. The Show class outputs the field name if present, but the examples
have no notion of label-specific behaviour. By extending DataName, record
definitions could be determined, but this change would increase the com-
plexity of all other example instances.

4 Generation of Standard Classes

Many instance generators can be expressed by example – including some from
the standard Haskell libraries (Enum, Ord, Bounded) and publicly distributed
libraries (Serial, Arbitrary). The Data class was introduced in Scrap Your Boil-
erplate [6], and allows Haskell programmers to write concise queries and trans-
formations. The fundamental operation is gfoldl, which involves a fold over each
value, and the application of an argument to join the fields. An example instance
can be given as:

instance Data DataName where
gfoldl k r (First ) = r First
gfoldl k r (Second x1 ) = r Second k̀` x1

gfoldl k r (Third x1 x2 ) = r Third k̀` x1 k̀` x2

gfoldl k r (Fourth x1 x2 ) = r Fourth k̀` x1 k̀` x2

The generator function is inferred as:

instance Data [[dataname]]where
[[map ctors (

gfoldl k r
([[ctorname]] [[map [1 . . ctorarity ] (x [[#]])]]) =
[[foldr k (r [[ctorname]])

[[map [1 . . ctorarity ] (x [[#]])]]
]]

)]]



5 Related Work

The purpose of this work is to find a pattern, and generalise that pattern to other
situations. Genetic algorithms [2] are often used to automatically find a pattern
in a data set. Genetic algorithms work by evolving a hypothesis (a gene sequence)
and testing on a sample problem. They are well suited to search problems where
the utility function is continuous – close hypotheses have similar fitness. The
main difference from this paper is that the hypothesis is random, whereas ours
is strongly directed by the shape of the example.

The area of optical character recognition [5] has some similar characteristics –
a page is analysed to look for common patterns (pictures or text passages), which
can be processed further. This is related to the process of using the fold pattern
(§2.3), where a repeating pattern is detected. The difference is that character
recognition works on image data, which does not have the same precision as
program code.

The closest work we are aware of is that of the theorem proving commu-
nity. Induction is a very common tactic for writing proofs, and well supported in
systems such as HOL Light [3]. Typically the user must suggest the use of induc-
tion, which the system checks for validity. Automatic inference of an induction
argument has been tried [8], but is rarely successful.

The concepts in this paper are applicable outside the domain of instances in
Haskell. Any programming language operation that exhibits some degree of uni-
formity could be automated. To give one example: the object-orientated commu-
nity have embraced design patterns [1], which involve many recurring patterns.

6 Conclusions and Future Work

We have presented a mechanism for automatically deriving instance generators
for Haskell type classes. Our technique has been implemented in the Derive tool
[9], where 60% of instance generators are specified by example. The ease of cre-
ating new instances has enabled several users to contribute instance generators
to the Derive tool. We see several lines of future work:

– Using automatic instance generation allows the underlying tool to change
the API for specifying instances, without requiring human intervention to
modify the generators – they can simply be regenerated. This freedom allows
instances to be expressed in new ways. Currently an instance is a fragment
of compile time code, but using Haskell’s reflection capabilities [7], instances
could be derived at run-time, removing the inconvenience of a separate pre-
processor.

– The provided data type (Figure 1) allows many instances to be inferred – but
more would be desirable. One approach to specifying more instances would
be to augment the existing data type with additional features, such as record
names (see §3). An alternative approach would be to introduce new data
types with features specifically targeted for certain types of definition. Care



would have to be taken to ensure that these extensions do not substantially
increase the complexity of writing examples.

Computers are ideally suited to applying repetitive patterns, but specifying
these patterns can be complex and error prone. By specifying the result, instead
of the pattern, a user can focus on what they want, rather than the mechanism
by which this is realized.

Acknowledgements Thanks to Matt Naylor and Chris Smith for helpful sugges-
tions on the presentation of this work. Thanks to Stefan O’Rear for work on the
Derive tool.

References

1. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Professional, 1995.

2. David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley Professional, January 1989.

3. John Harrison. HOL light: A tutorial introduction. In Mandayam Srivas and Albert
Camilleri, editors, Proc. Formal Methods in Computer-Aided Design, FMCAD’96,
volume 1166 of LNCS, pages 265–269. Spinger-Verlag, 1996.

4. Graham Hutton. A tutorial on the universality and expressiveness of fold. JFP,
9(4):355–372, July 1999.

5. S Impedovo, L Ottaviano, and S Occhinegro. Optical character recognition – A
survey. International Journal of Pattern Recognition and Artificial Intelligence,
5:1–24, 1991.

6. Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practical design
pattern for generic programming. Proc. TLDI ’03, 38(3):26–37, March 2003.

7. Ralf Lämmel and Simon Peyton Jones. Scrap more boilerplate: reflection, zips,
and generalised casts. In Proc. ICFP ’04, pages 244–255. ACM Press, 2004.

8. Sava Mintchev. Mechanized reasoning about functional programs. In K. Hammond,
D. N. Turner, and P. M. Sansom, editors, Functional Programming, pages 151–166.
Springer, Berlin, Heidelberg, 1994.

9. Neil Mitchell and Stefan O’Rear. Derive - project home page. http://www.cs.

york.ac.uk/~ndm/derive/, March 2007.
10. Simon Peyton Jones. Haskell 98 Language and Libraries: The Revised Report.

Cambridge University Press, 2003.
11. Philip Wadler. How to replace failure by a list of successes. In Proc. FPCA ’85,

pages 113–128. Springer-Verlag, 1985.
12. Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad hoc.

In Proc. POPL ’89, pages 60–76, New York, NY, USA, 1989. ACM Press.
13. Noel Winstanley. Reflections on instance derivation. In 1997 Glasgow Workshop

on Functional Programming, September 1997.


