
Extracted from:

The Pragmatic Programmer
your journey to mastery

20 thAnniversary Edition

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

The Pragmatic Programmer
your journey to mastery

20 thAnniversary Edition

Dave Thomas
Andy Hunt

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publisher
was aware of a trademark claim, the designations have been printed with initial capital letters
or in all capitals. "The Pragmatic Programmer" and the linking g device are trademarks of
The Pragmatic Programmers, LLC.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: [to come from ITP]

Copyright © 2020 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be ob-
tained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, request forms and the appro-
priate contacts within the Pearson Education Global Rights & Permissions Department,
please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-595705-9
ISBN-10: 0-13-595705-2

1 19

34 Shared State is Incorrect State

You’re in your favorite diner. You finish your main course, and ask your
server if there’s any apple pie left. He looks over his shoulder, sees one piece
in the display case, and says yes. You order it and sigh contentedly.

Meanwhile, on the other side of the restaurant, another customer asks their
server the same question. She also looks, confirms there’s a piece, and that
customer orders.

One of you is going to be disappointed.

Swap the display case for a joint bank account, and turn the waitstaff into
point-of-sale devices. You and your partner both decide to buy a new phone
at the same time, but there’s only enough in the account for one. Some-
one—the bank, the store, or you—is going to be very unhappy.

The problem is the shared state. Each server in the restaurant looked into
the display case without regard for the other. Each point-of-sale device looked
at an account balance without regard for the other.

Shared State is Incorrect StateTip 57

Nonatomic Updates
Let’s look at our diner example as if it were code:

Display caseDisplay case

pie_count: 1

Waiter1

if display_case.pie_count > 0
 promise_pie_to_customer()
 display_case.take_pie()
 give_pie_to_customer()
end

Waiter 2

if display_case.pie_count > 0
 promise_pie_to_customer()
 display_case.take_pie()
 give_pie_to_customer()
end

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tpp20
http://forums.pragprog.com/forums/tpp20

The two waiters operate concurrently (and, in real life, in parallel). Let’s look
at their code:

if display_case.pie_count > 0
 promise_pie_to_customer()
 display_case.take_pie()
 give_pie_to_customer()
end

Waiter 1 gets the current pie count, and finds that it is one. He promises the
pie to the customer. But at that point, waiter 2 runs. She also see the pie
count is one and makes the same promise to her customer. One of the two
then grabs the last piece of pie, and the other waiter enters some kind of error
state.

The problem here is not that two processes can write to the same memory.
The problem is that neither process can guarantee that its view of that
memory is consistent. Effectively, when a waiter executes display_case.pie_count(),
they copy the value from the display case into their own memory. If the value
in the display case changes, their memory (which they are using to make
decisions) is now out of date.

This is all because the fetching and then updating the pie count is not an
atomic operation: the underlying value can change in the middle.

So how can we make it atomic?

Semaphores and Other Forms of Mutual Exclusion

A semaphore is simply a thing that only one person can own at a time. You
can create a semaphore and then use it to control access to some other
resource. In our example, we could create a semaphore to control access to
the pie case, and adopt the convention that anyone who wants to update the
pie case contents can only do so if they are holding that semaphore.

Say the diner decides to fix the pie problem with a physical semaphore. They
place a plastic Leprechaun on the pie case. Before any waiter can sell a pie,
they have to be holding the Leprechaun in their hand. Once their order has
been completed (which means delivering the pie to the table) they can return
the Leprechaun to its place guarding the treasure of the pies, ready to mediate
the next order.

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tpp20
http://forums.pragprog.com/forums/tpp20

Let’s look at this in code. Classically, the operation to grab the semaphore
was called P, and the operation to release it was called V.2 Today we use terms
such as lock/unlock, claim/release, and so on.

case_semaphore.lock()

if display_case.pie_count > 0
 promise_pie_to_customer()
 display_case.take_pie()
 give_pie_to_customer()
end

case_semaphore.unlock()

This code assumes that a semaphore has already been created and stored in
the variable case_semapohore.

Let’s assume both waiters execute the code at the same time. They both try
to lock the semaphore, but only one succeeds. The one that gets the
semaphore continues to run as normal. The one that doesn’t get the
semaphore is suspended until the semaphore becomes available (the waiter
waits…). When the first waiter completes the order they unlock the semaphore
and the second waiter continues running. They now see there’s no pie in the
case, and apologize to the customer.

There’s are some problems with this approach. Probably the most significant
is that it only works because everyone who accesses the pie case agrees on
the convention of using the semaphore. If someone forgets (that is, some
developer writes code that doesn’t follow the convention) then we’re back in
chaos.

Make The Resource Transactional

The current design is poor because it delegates responsibility for protecting
access to the pie case to the people who use it. Let’s change it to centralize
that control. To do this, we have to change the API so that waiters can check
the count and also take a slice of pie in a single call.

slice = display_case.get_pie_if_available()
if slice
 give_pie_to_customer()
end

2. The names P and V come from the initial letters of Dutch words. However there is some
discussion about exactly which words. The inventor of the technique, Edsgar Dĳkstra,
has suggested both passering and prolaag for P, and vrijgave and possibly verhogen
for V.

• Click HERE to purchase this book now. discuss

Shared State is Incorrect State • 5

http://pragprog.com/titles/tpp20
http://forums.pragprog.com/forums/tpp20

To make this work, we need to write a method that runs as part of the display
case itself:

def get_pie_if_available() ####
if @slices.size > 0 #

 update_sales_data(:pie) #
return @slices.shift #

else # incorrect code!
false #

end #
end ####

This code illustrates a common misconception. We’ve moved the resource
access into a central place, but our method can still be called from multiple
concurrent threads, so we still need to protect it with a semaphore.

def get_pie_if_available()
 @case_semaphore.lock()

if @slices.size > 0
 update_sales_data(:pie)

return @slices.shift
else

false
end

 @case_semaphore.unlock()
end

Even this code might not be correct. If update_sales_data raises an exception, the
semaphore will never get unlocked, and all future access to the pie case will
hang indefinitely. We need to handle this:

def get_pie_if_available()
 @case_semaphore.lock()

 try {
if @slices.size > 0

 update_sales_data(:pie)
return @slices.shift

else
false

end
 }
ensure {

 @case_semaphore.unlock()
 }
end

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tpp20
http://forums.pragprog.com/forums/tpp20

Because this is such a common mistake, many languages provide libraries
that handle this for you:

def get_pie_if_available()
 @case_semaphore.protect() {

if @slices.size > 0
 update_sales_data(:pie)

return @slices.shift
else
false

end
 }
end

Multiple Resource Transactions
Our diner just installed an ice cream freezer. If a customer orders pie à la
mode,3 the waiter will need to check that both pie and ice cream are available.

We could change the waiter code to something like:

slice = display_case.get_pie_if_available()
scoop = freezer.get_ice_cream_if_available()

if slice && scoop
 give_order_to_customer()
end

This won’t work, though. What happens if we claim a slice of pie, but when
we try to get a scoop of ice cream we find out there isn’t any? We’re now left
holding some pie that we can’t do anything with (because our customer must
have ice cream). And the fact we’re holding the pie means it isn’t in the case,
so it isn’t available to some other customer who (being a purist) doesn’t want
ice cream with it.

We could fix this by adding a method to the case that lets us return a slice
of pie. We’ll need to add exception handling to ensure we don’t keep resources
if something fails.

slice = display_case.get_pie_if_available()

if slice
 try {
 scoop = freezer.get_ice_cream_if_available()

if scoop
 try {
 give_order_to_customer()

3. That’s with a scoop of ice cream for those of you living outside the U.S.

• Click HERE to purchase this book now. discuss

Shared State is Incorrect State • 7

http://pragprog.com/titles/tpp20
http://forums.pragprog.com/forums/tpp20

 }
rescue {

 freezer.give_back(scoop)
 }

end
 }
rescue {

 display_case.give_back(slice)
 }
end

Again, this is less than ideal. The code is now really ugly: working out what
it actually does is difficult: the business logic is buried in all the housekeeping.

Previously we fixed this by moving the resource handling code into the resource
itself. Here, though, we have two resources. Should we put the code in the
display case or the freezer?

We think the answer is “no” to both options. The pragmatic approach would
be to say that “apple pie à la mode” is it’s own resource. We’d move this code
into a new module, and then the client could just say “get me apple pie with
ice cream” and it either succeeds or fails.

Of course, in the real world there are likely to be many composite dishes like
this, and you wouldn’t want to write new modules for each. instead, you’d
probably want some kind of menu item which contained references to its
components, and then have a generic get_menu_item method that does the
resource dance with each.

Non-transactional Updates
A lot of attention is given to shared memory as a source of concurrency
problems, but in fact the problems can pop up anywhere where your applica-
tion code shares mutable resources: files, databases, external services, and
so on. Whenever two or more instances of your code can access some resource
at the same time, you’re looking at a potential problem.

Sometimes, the resource isn’t all that obvious. While writing this edition of
the book we updated the toolchain to do more work in parallel using threads.
This caused the build to fail, but in bizarre ways and random places. A com-
mon thread through all the errors was that files or directories could not be
found, even though they were really in exactly the right place.

We tracked this down to a couple of places in the code which temporarily
changed the current directory. In the nonparallel version, the fact that this

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tpp20
http://forums.pragprog.com/forums/tpp20

code restored the directory back was good enough. But in the parallel version,
one thread would change the directory and then, while in that directory,
another thread would be running. That thread would expect to be in the
original directory, but because the current directory is shared between thread,
that wasn’t the case.

The nature of this problem prompts another tip:

Random Failures Are Often Concurrency IssuesTip 58

Other Kinds of Exclusive Access
Most languages have library support for some kind of exclusive access to
shared resources. They may call it mutexs (for mutual exclusion), monitors,
or semaphores. These are all implemented as libraries.

However, some languages have concurrency support built into the language
itself. Rust, for example, enforces the concept of data ownership; only one
variable or parameter can hold a reference to any particular piece of mutable
data at a time.

You could also argue that functional languages, with their tendency to make
all data immutable, make concurrency simpler. However, they still face the
same challenges, because at some point they are forced to step into the real,
mutable world.

Doctor, It Hurts…
If you take nothing else away from this section, take this: concurrency in a
shared resource environment is difficult, and managing it yourself is fraught
with challenges.

Which is why we’re recommending the punchline to the old joke:

Doctor, it hurts when I do this.

Then don’t do it.

The next couple of sections suggest alternative ways of getting the benefits
of concurrency without the pain.

Related Sections Include
• Topic 38, Programming by Coincidence, on page ?
• Topic 28, Decoupling, on page ?

• Click HERE to purchase this book now. discuss

Shared State is Incorrect State • 9

http://pragprog.com/titles/tpp20
http://forums.pragprog.com/forums/tpp20

• Topic 10, Orthogonality, on page ?

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tpp20
http://forums.pragprog.com/forums/tpp20

