Extracted from:

The Pragmatic Programmer

your journey to mastery

vvAddison-Wesley

Boston « Columbus « New York « San Francisco « Amsterdam « Cape Town
Dubai « London « Madrid « Milan « Munich « Paris « Montreal « Toronto « Delhi « Mexico City
Séo Paulo - Sydney « Hong Kong « Seoul « Singapore - Taipei » Tokyo

B
o
=a
=
<

The Pragmatic Programmer

your journey to mastery

Dave Thomas
Andy Hunt

vvAddison-Wesley

Boston « Columbus « New York « San Francisco « Amsterdam « Cape Town
Dubai « London « Madrid « Milan « Munich « Paris « Montreal « Toronto « Delhi « Mexico City
Séo Paulo - Sydney « Hong Kong « Seoul « Singapore - Taipei » Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publisher
was aware of a trademark claim, the designations have been printed with initial capital letters
or in all capitals. "The Pragmatic Programmer" and the linking g device are trademarks of
The Pragmatic Programmers, LLC.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact intlcs@pearson.com.
Visit us on the Web: informit.com/aw

Library of Congress Control Number: [to come from ITP]

Copyright © 2020 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be ob-
tained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, request forms and the appro-
priate contacts within the Pearson Education Global Rights & Permissions Department,
please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-595705-9
ISBN-10: 0-13-595705-2

1 19

Preface to the Second Edition

Back in the 1990s, we worked with companies whose projects were having
problems. We found ourselves saying the same things to each: maybe you
should test that before you ship it; why does the code only build on Mary’s
machine? Why didn’t anyone ask the users?”

To save time with new clients, we started jotting down notes. And those notes
became The Pragmatic Programmer. To our surprise the book seemed to strike
a chord, and it has continued to be popular these last 20 years.

But 20 years is many lifetimes in terms of software. Take a developer from
1999 and drop them into a team today, and they’'d struggle in this strange
new world. But the world of the 1990s is equally foreign to today’s developer.
The book’s references to things such as CORBA, CASE tools, and indexed
loops were at best quaint and more likely confusing.

At the same time, 20 years has had no impact whatsoever on common sense.
Technology may have changed, but people haven’t. Practices and approaches
that were a good idea then remain a good idea now. Those aspects of the book
aged well.

So when it came time to create this 20™ Anniversary Edition, we had to make
a decision. We could go through and update the technologies we reference
and call it a day. Or we could reexamine the assumptions behind the practices
we recommended in the light of an additional two decades worth of experience.

In the end, we did both.

As a result, this book is something of a Ship of Theseus.' Roughly one-third
of the topics in the book are brand new. Of the rest, the majority have been
rewritten, either partially or totally. Our intent was to make things clearer,
more relevant, and hopefully somewhat timeless.

1. If, over the years, every component of a ship is replaced as it fails, is the resulting
vessel the same ship?

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tpp20
http://forums.pragprog.com/forums/tpp20

Preface to the Second Edition ® iv

We made some difficult decisions. We dropped the Resources appendix, both
because it would be impossible to keep up-to-date and because it’s easier to
search for what you want. We reorganized and rewrote topics to do with
concurrency, given the current abundance of parallel hardware and the dearth
of good ways of dealing with it. We added content to reflect changing attitudes
and environments, from the agile movement which we helped launch, to the
rising acceptance of functional programming idioms and the growing need to
consider privacy and security.

Interestingly, though, there was considerably less debate between us on the
content of this edition than there was when we wrote the first. We both felt
that the stuff that was important was easier to identify.

Anyway, this book is the result. Please enjoy it. Maybe adopt some new
practices. Maybe decide that some of the stuff we suggest is wrong. Get
involved in your craft. And give us feedback.”

But, most important, remember to make it fun.

How the Book Is Organized

This book is written as a collection of short topics. Each topic is self-contained,
and addresses a particular theme. You'll find numerous cross references,
which help put each topic in context. Feel free to read the topics in any
order—this isn’t a book you need to read front-to-back.

Occasionally you’ll come across a box labeled Tip nn (such as Tip 1, Care

feel the tips have a life of their own—we live by them daily. You'll find a
summary of all the tips on a pull-out card inside the back cover.

We've included exercises and challenges where appropriate. Exercises normally
have relatively straightforward answers, while the challenges are more open-
ended. To give you an idea of our thinking, we've included our answers to the
exercises in an appendix, but very few have a single correct solution. The
challenges might form the basis of group discussions or essay work in
advanced programming courses.

There’s also a short bibliography listing the books and articles we explicitly
reference.

2. https://pragprog.com/titles/tpp20

« Click HERE to purchase this book now. discuss

https://pragprog.com/titles/tpp20
http://pragprog.com/titles/tpp20
http://forums.pragprog.com/forums/tpp20

What's ina Name? ¢ v

What’'s in a Name?

“When I use a word,” Humpty Dumpty said, in rather a
scornful tone, “it means just what I choose it to
mean—neither more nor less.”

Lewis Carroll, Through the Looking-Glass

Scattered throughout the book you’ll find various bits of jargon—either per-
fectly good English words that have been corrupted to mean something
technical, or horrendous made-up words that have been assigned meanings
by computer scientists with a grudge against the language. The first time we
use each of these jargon words, we try to define it, or at least give a hint to
its meaning. However, we're sure that some have fallen through the cracks,
and others, such as object and relational database, are in common enough
usage that adding a definition would be boring. If you do come across a term
you haven'’t seen before, please don't just skip over it. Take time to look it up,
perhaps on the web, or maybe in a computer science textbook. And, if you
get a chance, drop us an email and complain, so we can add a definition to
the next edition.

Having said all this, we decided to get revenge against the computer scientists.
Sometimes, there are perfectly good jargon words for concepts, words that
we've decided to ignore. Why? Because the existing jargon is normally
restricted to a particular problem domain, or to a particular phase of develop-
ment. However, one of the basic philosophies of this book is that most of the
techniques we're recommending are universal: modularity applies to code,
designs, documentation, and team organization, for instance. When we
wanted to use the conventional jargon word in a broader context, it got con-
fusing—we couldn’t seem to overcome the baggage the original term brought
with it. When this happened, we contributed to the decline of the language
by inventing our own terms.

Source Code and Other Resources

Most of the code shown in this book is extracted from compilable source files,
available for download from our website’.

There you’ll also find links to resources we find useful, along with updates
to the book and news of other Pragmatic Programmer developments.

3. https://www.pragprog.com/titles/tpp20

« Click HERE to purchase this book now. discuss

https://www.pragprog.com/titles/tpp20
http://pragprog.com/titles/tpp20
http://forums.pragprog.com/forums/tpp20

Preface to the Second Edition ® vi

Send Us Feedback

We’d appreciate hearing from you. Email us at ppbook@pragprog.com.

Second Edition Acknowledgments, Year 2020

« Click HERE to purchase this book now. discuss

mailto:ppbook@pragprog.com
http://pragprog.com/titles/tpp20
http://forums.pragprog.com/forums/tpp20

