
Industry
GitOps-enabled feature
management platform

Website
flipt.io

We’re always interested in hearing how our community is using
Dagger – their use cases, their challenges, and their experiences
with deploying Dagger in different environments. Our Discord is a
great place to find these stories, and to benefit from the knowledge
and experience of the Dagger community.

In this blog post, we’ll share the story of Flipt, an open source, self-
hosted feature flag solution. Flipt uses Dagger as an integral part of
its CI/CD pipeline. With Dagger, Flipt has seen its build pipeline
with subsequent integration tests go from 10 minutes with an
empty cache to 17 seconds on a subsequent run!

Dagger feels like an
actual innovation in
CI/CD. There's a real
attention to getting
feedback from
everyone and
feeding that back
into the design and
building something
that people need."

Flipt stores its source code in a Go multi-module repository and
uses a Go workspace to bring the modules together. Initially, Flipt's
CI/CD pipeline used GitHub Actions for both unit and integration
tests. The pipeline used a matrix strategy to test different
configurations of feature flags and configurations.

There were two main challenges with this approach.
Test scripts were written in Bash. Flipt, however, is written
entirely in Go. This created an inconsistency, wherein
application code was written in one language and application
tests in a different language.
Test scripts were executed in separate VMs by Github Actions,
which was cumbersome. They had brittle little bash scripts for
backgrounding the Flipt process and then running the tests
against them.

The Flipt team had previously experimented with Dagger's CUE-
based implementation in other projects. Dagger's release of a Go
SDK gave them a reason to rethink their CI/CD strategy and
consider re-implementing it in Go with Dagger. Dagger being
open-source also aligned closely with Flipt's own values.

The problem: Networking and language limitations
for CI testing

© Dagger, Inc. All rights reserved | www.dagger.io | contact@dagger.io

How Flipt Improved Coverage and Build Times with
Dagger

Case Study | Flipt

Open source is a
value that's super
important to us.
Flipt being 100%
open source and
the value
alignment with
Dagger in that
respect just made
a lot of sense to us.

https://discord.com/invite/dagger-io
https://www.flipt.io/

The Flipt team currently uses Dagger for both build and test phases
of its pipeline, handing off to GoReleaser for the release phase.

In the build phase, the Dagger pipeline downloads the
application source code, adds required dependencies and build
tools, and builds the application. The end result of the build
phase is two artifacts: a "test" image with the source code plus
build and test dependencies, and a "production" image
optimized for distribution.
In the test phase, the Dagger pipeline runs Flipt's complete
suite of unit and integration tests using the Go SDK, validating
the test image against a common set of Flipt operations. In
addition to performing complete end-to-end API testing, the
pipeline also performs additional tests related to importing,
validating and exporting feature flag configurations. These tests
are performed against a variety of databases (including
Postgres, MySQL and CockroachDB).

Flipt has seen several benefits after switching to Dagger:

Native Go support makes it easier for the team to expand the
scope of the test suite with additional configurations and
permutations -for example, tests against the HTTP or gRPC API,
tests with or without authentication enabled, and so on. Since
tests are now written in Go, it's much easier for anyone in the
team to add new tests or improve existing tests.
Dagger's built-in support for container networking enables
testing to be performed against an isolated, containerized
instance of the Flipt API instead of the live API.
Dagger's built-in support for service containers makes it
possible to test against an isolated, containerized instance of the
Flipt API instead of the live API.
Dagger's built-in support for service containers makes it
possible to test against multiple database engines, and to
quickly add test support for a new database engine.
The same Dagger pipeline works consistently both locally and
remotely, reducing the feedback loop when modifying the
pipeline - for example, when adding tests for a new database
engine or a new feature flag.

The solution: Fast, full-featured native-language CI
testing with Dagger

© Dagger, Inc. All rights reserved | www.dagger.io | contact@dagger.io

Case Study | Flipt

Perhaps the biggest benefit, though, is in application build and test
times. Flipt's pipeline is fairly large and complex. However, by
leveraging Dagger's engine caching and mounted cache volumes,
Flipt is able to avoid unnecessary re-downloading or re-computing
of assets. When Flipt is compiled with an empty build cache, a fresh
run will produce 1 GB of build-cache entries and take approximately
10 minutes. This drops to approximately 17 seconds on subsequent
runs, thanks to Dagger's caching...an improvement of ~97%!

We've got a
distributable that
can be configured
in many ways. We
want to test that it
still works even
when we change
the configuration,
or when we
configure it in
different ways.
Being able to
encode those
requirements in
Go is a very nice
experience."

© Dagger, Inc. All rights reserved | www.dagger.io | contact@dagger.io

Case Study | Flipt

Flipt currently uses GoReleaser to package and distribute the
artifacts generated by the Dagger pipeline. In the near future, the
team plans to completely integrate Dagger into the CI pipeline,
including for the release phase. Dagger's multi-platform support
will be key here, to build and release the Flipt distributable for
different architectures.

Flipt is also experimenting with importing and merging Go
profiling data from the Dagger pipeline to get a deeper
understanding of test coverage and performance for integration
tests. And the team is keen to improve the CI pipeline further - for
example, by using Dagger to connect to various remote storage
engines for caching.

The future: Release packaging, profiling and remote
caching with Dagger

