Dagger

Case Study | Airbyte

Dagger Cloud: Going 100% Faster, Spending 75% Less

/f}) Airbyte

Industry
data integration

Website
airbyte.com

‘ ‘ "Dagger is the first
thing we've seen
that looks at the
way CI/CD works
and actually tries to
turn some of the
ideas on their head,
which I think is
pretty exciting.
There's potential to
dramatically
improve the way
our entire software-
development
supply chain
works.”

We're always interested in hearing how our community is using
Dagger - their use cases, their challenges, and their experiences
with deploying Dagger in different environments. Our Discord is a
great place to find these stories, and to benefit from the knowledge
and experience of the Dagger community.

In this blog post, we'll share the story of Daggernauts Augustin
Lafanecheére (aka @alafa on Discord, alafanechere on GitHub) and
Conor Barber (aka @conorba on Discord, cpdeethree on Github).
Both work at Airbyte, an open-source ELT platform managing
hundreds of Docker containers. Augustin is part of the Connector
Operations team responsible for managing Cl for Airbyte
connectors, while Conor works in the Platform Infrastructure team.
Over the last few months, Augustin and Conor have transformed
Airbyte's maze of GitHub Actions, YAML, and shell scripts into a
streamlined CI/CD process powered by Dagger and significantly
enhanced Airbyte's developer experience.

Legacy Cl: A Maze of YAML and Shell Scripts

Airbyte has an extensive ecosystem of 350+ containerized
connectors, all of which need to be tested regularly. On average,
Airbyte publishes 17 connectors per day and tests 100+ connectors
per night, both as part of regularly scheduled testing cycles and in
response to incoming pull requests. Airbyte also regularly tests
connectors even if the code hasn't recently changed - they ensure
that upstream APIs haven't changed and still work as expected.

Every new connector needs a new test suite; as a result, build and
test requirements scale linearly with the number of connectors.

Being able to consistently and reliably build, test, and publish
connectors while also ensuring visibility to both platform and
development teams is, therefore, a considerable CI/CD challenge.


https://discord.com/invite/dagger-io
https://github.com/alafanechere
https://discord.com/invite/dagger-io
https://github.com/cpdeethree
https://airbyte.com/

@ Dagger

Not being able to
debug locally
when there are
problems is a
pretty major pain
point. We were
looking for a better
way.”

We decided on
Dagger because of
the expressiveness
of being able to do
things completely
in code. Being able
to write things in a
more simple,
imperative style
makes it a lot
easier to
understand and
test.”

Case Study | Airbyte

Before Dagger, Airbyte's Cl consisted of GitHub Actions YAML, shell
scripts and Gradle scripts. Although the system worked, the overall
team satisfaction was low:

» The GitHub Actions tooling was a maze of YAML and shell
scripts that were slow to execute and difficult to maintain.

e The Gradle tooling was powerful, but complex to understand
and use. It worked well for Java builds, but less so for Docker-
and Python-related tasks (of which there were many).

« If a Cl pipeline failed, developers had no way to simply replicate
the failure locally to identify the error and had to spend time
and effort searching the previously-mentioned maze for the
source of the error.

e The Cl scripts had been written by different team members at
different times and therefore had no clear owner.

e The outsized nature of Airbyte's test requirements meant

* more, and more complex, Cl pipelines and consequently high
server costs.

“Daggerized” Cl: Auto-Scaling Runners with Dagger
Cloud Distributed Caching

The Airbyte team investigated various other orchestration tools to
solve these problems. In late 2022, Dagger's release of a Python
SDK made it the most appealing choice, as Airbyte was already
using Python extensively. The team started transitioning to Dagger
in February 2023 and ran their first Dagger pipeline in production in
May 2023.

The new system employs remote Dagger Engines on a Kubernetes
cluster leveraging Dagger Cloud to utilize platform-neutral caching
strategies, optimize start-up times, and scale flexibly according to
load. Here's how it works:

e Airbyte uses a slim GitHub Action which responds to repository
events (pull requests, pushes, merges, ...) by triggering a custom
command-line wrapper (CLI)_.around Dagger. This CLI is used for
both remote Cl and local development - Airbyte finally had a
way to replicate the Cl experience locally, and it was fast!

o Dagger, via this CLI wrapper, takes care of run orchestration and
pipeline invocation.



https://github.com/airbytehq/airbyte/tree/master/airbyte-ci/connectors/pipelines
https://github.com/airbytehq/airbyte/tree/master/airbyte-ci/connectors/pipelines

@ Dagger

Before Dagger it
was 'Push and
Pray.' Now, we
have the same tool
running locally and
in Cl, and that just
streamlines
everything. Now
our mantra is test,
test, test, test.”

“We have made a
valuable shift. Our
Cl pipelines are
now expressed as
code, so
refactoring and
optimization is
much easier. Much
of our speed gains
were achieved
because we can
now spot poor,
unoptimized CI
logic in a simplified
way.”

Case Study | Airbyte

e Pipelines are executed by a fleet of Dagger Engines running on
Kubernetes.

» Dagger Cloud provides a distributed caching service that all
runners have access to. Each Dagger Engine communicates
with Dagger Cloud to read from, and write to, the shared cache.

¢ Karpenter, a Kubernetes-native node auto-scaler, dynamically
adds or removes runner nodes depending on workload
requirements. Through this process, Airbyte also gained cost
controls they lacked before.

Benefits: Cl Pipelines as Code, Unified Local and Remote CI

Some of the benefits of the new “Daggerized” system are:

Faster local debugging: Airbyte's development teams now use the
same CLI wrapper as the Cl engine. This ensures parity and
portability between local and remote Cl runs. As a result, developers
are able to test code locally, identify errors early, and have fewer
surprises when pushing to remote repositories.

Better maintainability: By writing pipelines in Python instead of
YAML, Cl code is easier to understand, maintain, and optimize.
Native-language support makes it easy to create complex
conditional pipelines (for example, running a pipeline based on the
result of another pipeline). Working entirely in a programming
language also makes it easier to follow best practices for testing
and packaging Cl pipelines as code.

Quicker pipeline execution: Dagger's built-in caching support and
integration with Dagger Cloud alleviates the problem of cold starts
and enables pipelines to run quicker. Dagger's "caching by default"
approach is also easier to work with compared to Gradle, which
requires caching to be explicitly configured.

Speed

With Dagger Cloud, Cl pipelines are now 2-5 times faster on
average. This is because Dagger Cloud intelligently stores the
cached data and operations from previous pipeline runs in the
cloud and sends this data to new Dagger Engines whenever they
are provisioned. As a result, new Dagger Engines start up with a
"warm cache" and have all the caching benefits of previous runs.



@ Dagger

"In the worst-case
scenario, it's about
twice as fast as the
legacy way and in
the best-case
scenario, it's often
four to five times
as fast. The shared
remote cache is a
core component of
why we're able to
see a lot of these
gains, because it's
the foundation
upon which we
built this
distributed
architecture."”

"The level of trust
between the
Airbyte team and
the Dagger team is
high. It's been a
very fruitful and
helpful
collaboration with
the Dagger team,
who are willing to
step in and make
sure that we get
things resolved.”

Case Study | Airbyte

Scalability and Cost

Running Dagger inside a single Kubernetes cluster with auto-
scaling runners has improved overall efficiency and drastically
reduced Cl costs for Airbyte. Airbyte is now able to intelligently
scale up and down depending on the workload in Cl. Runner nodes
are provisioned on-demand and automatically de-provisioned
when they are not needed. As a result, server costs are significantly
lower than before.

"We examined our spend and there were times in the past six to
eight months that it was at least four times what it is now.
Switching to a single-runner architecture has both reduced our
cost and made our usage of server resources more efficient."

Future Plans

Going forward, Augustin and Conor plan to continue building out
Airbyte's Cl infrastructure with Dagger. They are working to get
other internal teams to adopt Dagger and hope to see those teams
contributing more tests to the current pipelines as well as adding
their own pipelines in the future. With Dagger Cloud, they are
looking to increase the observability of their pipeline internals and
gain greater control over caching and parallelization configuration.



