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Abstract: Assigning geospatial objects with specific categories at the pixel level is a fundamental
task in remote sensing image analysis. Along with the rapid development of sensor technologies,
remotely sensed images can be captured at multiple spatial resolutions (MSR) with information
content manifested at different scales. Extracting information from these MSR images represents
huge opportunities for enhanced feature representation and characterisation. However, MSR images
suffer from two critical issues: (1) increased scale variation of geo-objects and (2) loss of detailed
information at coarse spatial resolutions. To bridge these gaps, in this paper, we propose a novel
scale-aware neural network (SaNet) for the semantic segmentation of MSR remotely sensed imagery.
SaNet deploys a densely connected feature network (DCFFM) module to capture high-quality multi-
scale context, such that the scale variation is handled properly and the quality of segmentation is
increased for both large and small objects. A spatial feature recalibration (SFRM) module was further
incorporated into the network to learn intact semantic content with enhanced spatial relationships,
where the negative effects of information loss are removed. The combination of DCFFM and SFRM
allows SaNet to learn scale-aware feature representation, which outperforms the existing multi-scale
feature representation. Extensive experiments on three semantic segmentation datasets demonstrated
the effectiveness of the proposed SaNet in cross-resolution segmentation.

Keywords: deep convolutional neural network; multiple spatial resolutions; remote sensing; scale-
aware feature representation; semantic segmentation

1. Introduction

Fine spatial resolution (FSR) remotely sensed images are characterized by rich spatial
information and detailed objects with semantic content. Semantic segmentation using
FSR remotely sensed imagery has been a hot topic in the remote sensing community,
which essentially undertakes a dense pixel-level classification task and has been applied
in various geo-related applications including land cover classification [1], infrastructure
planning [2] and territorial management [3], as well as change detection [4] and other
urban applications [5–7].

Driven by the rapid development of sensor technology over the past few years, FSR
remotely sensed images are captured increasingly at multiple spatial resolutions (MSR),
meaning that FSR remotely sensed images are shifting towards MSR remotely sensed
images [8]. MSR remotely sensed images provide much richer detailed information and
more various geometrical characterisation than FSR images [9,10]. Meanwhile, diverse
spatial resolutions result in the complex scale variation of geospatial objects as illustrated in
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Figure 1. Thus, the semantic segmentation of MSR remotely sensed images is an extremely
challenging task but has profound impacts.
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Figure 1. Illustration of the complex scale variation of geospatial objects in MSR remotely sensed images. Each image is a 
512 × 512 px patch. Due to the diverse spatial resolutions, the scale variation within (e.g., vehicles in the highlighted yellow 
region) and between objects (e.g., buildings and vehicles) has been enlarged. 
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512 × 512 px patch. Due to the diverse spatial resolutions, the scale variation within (e.g., vehicles in the highlighted yellow
region) and between objects (e.g., buildings and vehicles) has been enlarged.

To handle the multi-scale variation in MSR semantic segmentation, existing research
relies on two major strategies: (1) methods based on the traditional handcrafted features
and (2) methods based on hierarchical feature representations of the deep convolutional
neural network (DCNN) [11]. Traditional hand-crafted methods involve either two-stage
segmentation or one-stage segmentation. The multi-resolution segmentation algorithm
is the most successful two-stage segmentation approach [12], which partitions an image
into homogeneous segments in the first stage and assigns these segments into particular
categories during the second stage [13,14]. To capture the scale variation of geo-objects,
MRS-based methods introduce a manually controlled scale parameter for determining
the object size [15,16]. One-stage handcrafted approaches consider segmentation as a
patch-based dense classification task in computer vision. Typically, a handcrafted feature
extractor such as the scale-invariant feature transformer (SIFT) is adopted to extract multi-
scale patterns within MSR images [17,18]. These well-engineered features are fed into
supervized classifiers such as a support vector machine (SVM) [19], random forests [20,21]
and conditional random fields (CRF) [22] to realize pixel-level semantic labelling or seg-
mentation. However, designing effective hand-crafted features is time-consuming and the
performance of handcrafted features depends on parameter settings and specific data, thus
limiting its generalisation capability.

Deep convolutional neural networks have led to significant breakthroughs in semantic
segmentation [23–26], thanks to their hierarchical feature representation in an end-to-
end and automatic fashion [27]. The learned hierarchical features are highly robust and
generalized, allowing multi-scale variation to be captured and characterized [28]. Common
DCNN-based semantic segmentation of multi-scale objects includes an image pyramid,
multi-level feature fusion (MFF) framework and spatial pyramid pooling (SPP) architecture.

The image pyramid method trains parallel networks with input images at several
resolutions and merges multi-resolution features [29]. Although it could strengthen multi-
scale feature representation, the complex training process involves high computational
complexity, reducing the efficiency of the network. To enhance the multi-scale represen-
tation of deep networks without increasing extensive computational complexity [30], the
MFF framework and the SPP architecture have been investigated frequently in recent
years [31–33]. The MFF framework merges low-level detailed features and high-level
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semantic features through skip connections to establish multi-scale representation. For
example, U-Net and its variants concatenate encoding features and decoding features via
skip connections, and the merged features can restore the original image resolution [34–36].
Feature pyramid network (FPN) series build an extra top-down pathway to integrate
multi-scale features [37,38]. The SPP architecture develops parallel atrous convolution
layers or pooling layers for field-of-view enlargement, thereby avoiding the disadvantage
of the fixed receptive field in the traditional convolutional layer and capturing multi-scale
information. Typical models include PSPNet [39], DeepLab [40–42] and its extensions in
the remote sensing domain [43,44].

Although these methods have achieved the significant advancement of the semantic
segmentation of multi-scale objects, they still demonstrate limited quality and fidelity
for segmenting MSR remotely sensed images. The main reasons are two-fold: (1) The
complex scale variation of geo-objects in MSR remotely sensed images is difficult to model
with single multi-scale representation approaches. (2) the methods are less effective in
abstracting geo-objects due to ignoring the loss of details in objects at coarse spatial
resolutions. As shown in Figure 1, the details of vehicles (e.g., a window) are clear at the
original spatial resolution, but much unclearer at the 0.25× spatial resolution.

In this paper, we propose a novel scale-aware neural network (SaNet) for the semantic
segmentation of MSR remotely sensed images. Specifically, we explore the multi-scale
structure and propose a novel densely connected feature fusion module (DCFFM). To
avoid the limitation of the single multi-scale representation, the DCFFM module combines
the advantages of the MFF framework and SPP architecture for high-quality multi-scale
representation. It constructs several dense connections with different enlarged receptive
field sizes to capture rich multi-scale information in the fashion of SPP. Most importantly,
weighted fusion (WF) operations were employed for multi-level feature fusion, correcting
the latent fitting residual from semantic gaps in features at different levels. Moreover,
we present a spatial feature recalibration module (SFRM) that models the scale-invariant
spatial relationship within the semantic features of geo-objects to strengthen the feature ex-
traction at coarse resolutions. The SFRM builds a dual-branched structure to model spatial
relationships at different scales, which is particularly suitable for multi-resolution images.
With the combination of the DCFFM and SFRM, SaNet could extract the scale-aware feature
to capture the complex scale variation for semantic segmentation of MSR remotely sensed
images. The structure of the proposed SaNet is elegantly designed and separable, so it
can be easily transplanted into other DCNNs trained end-to-end automatically. The major
contributions of this paper are summarized as follows:

(1) A novel scale-aware neural network is proposed for the semantic segmentation of
MSR remotely sensed images. It learns scale-aware feature representation instead
of current multi-scale feature representation to address the large-scale variation of
geo-objects in MSR remotely sensed images.

(2) We developed a simple yet effective spatial feature recalibration module with a
dual-branched structure. It enhances the scale-invariant feature representation by
modelling the spatial relationship within semantic features, providing a new perspec-
tive for alleviating the effects of loss in object details at coarse resolutions.

(3) We propose a densely connected feature fusion module to obtain high-quality multi-
scale representation. To leverage the advantage of the SPP architecture in multi-scale
information capture, we designed the large-field connection to enlarge the receptive
field of high-level features for further connecting with features at different levels. In
addition, we employed weighted fusion operations for multi-level feature aggregation.
It increases the generalization of fused features significantly by reducing the latent
fitting residual.

The remainder of this paper is organized as follows. The architecture of SaNet and its
components are detailed in Section 2. Experimental comparisons between SaNet and a set
of benchmark methods are provided in Section 3. A comprehensive discussion is presented
in Section 4. Finally, conclusions are drawn in Section 5.
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2. Materials and Methods
2.1. Overview

The overall architecture of the proposed SaNet is composed of the ResNet back-
bone [45], SFRM and DCFFM, as shown in Figure 2. The ResNet backbone consists of
four residual blocks, extracting the corresponding four ResBlock features from the input
image: ResBlock1, ResBlock2, ResBlock3 and ResBlock4. ResBlock4 is downscaled 16 times,
and its size is the same as ResBlock3. Please note that the outputs of ResBlock1, ResBlock2
and ResBlock3 are further processed by a standard 1 × 1 convolution to unify the channel
dimension to 256, and DCFFM keeps this dimension in its operations. Considering the
efficiency of SaNet, SFRM is only deployed on top of the ResNet backbone to recalibrate
the high-level semantic feature ResBlock4. Thereafter, the recalibrated feature RF4 is fed
into DCFFM. DCFFM employs three large-field connections (marked by red arrows) to
generate the large-field features (i.e., LF1, LF2 and LF3) from RF4 and constructs a top-down
pathway to aggregate ResBlock features (grey), recalibrated features (blue) and large-field
features (green) by weighted fusion operations. The three layers of DCFFM produce three
recalibrated features (i.e., RF1, RF2 and RF3), which are then fused with RF4 to generate
the scale-aware feature. Finally, we constructed a simple head to generate the final seg-
mentation feature and compute loss. The head utilizes a 3 × 3 convolution layer to reduce
the channel dimension of the scale-aware feature to the number of classes and restores the
feature map to the input image size with an upsampling operation.
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2.2. Spatial Relationship Enhancement with SFRM

To address the issue of object detail loss at coarse spatial resolutions, we designed a
spatial feature recalibration module that could model invariant spatial relationships within
the semantic features of geospatial objects, thereby increasing the feature representation for
MSR images. SFRM constructs two branches of different sizes to model the global spatial
relationship at diverse scales, remedying the limitation of the single-branch structure that
can only extract the fixed-scale spatial interactions. As shown in Figure 2a, the input is the
high-level feature ResBlock4 and the output is the recalibrated feature RF4. By applying two
convolution layers with different kernel sizes and strides, the input ResBlock4 is divided
into two branch features, X1 and X2. The generation process of X1 and X2 can be formalized
as follows:

X1 = ResBlock4·W1
[
C, C′, K1, S1

]
(1)

X2 = ResBlock4·W2
[
C, C′, K2, S2

]
(2)

where K1 = 1 and S1 = 1 represent the size and stride of the filter W1. Similarly, K2 = 3
and S2 = 2 represent the size and stride of the filter W2. C = 2048 and C′ = 256 denote the
input channels and output channels, respectively. Operated by the two convolution layers,
the size of X1 is twice the size of X2.

The generated X1 and X2 are then fed into the spatial functions fO and fθ , respectively,
to provide information on the global spatial relationship. Thereafter, the spatially enhanced
features are merged by a weighted element-wise sum operation to generate RF4:

RF4(X1, X2) = α· fO(X1) + (1− α)· fθ(X2) (3)

Here, α is a trainable variable that suppresses redundant features produced during
the merging process. The spatial functions fO and fθ can be defined as:

fO(X1) = O(σ(X1)· fs(ϕ(X1)·σ(X1))) (4)

fθ(X2) = θ(σ(X2)· fs(ϕ(X2)·σ(X2))) (5)

where fs represents the softmax activation function. The detailed implementation steps of
fO and fθ are as follows:

1. The feature map X1 is reshaped by σ and ϕ into C′ × HW and HW × C′, respectively.
Similarly, the feature map X2 is reshaped into C′ × HW

4 and HW
4 × C′.

2. A dot production operation is applied to σ(X1) and ϕ(X1) to produce the spatial
relationship matrix HW × HW, which is further fed into the softmax activation
function fs to generate the probability map for feature recalibration. Meanwhile, σ(X2)
and ϕ(X2) are processed by a similar procedure, but the shape of the corresponding
probability map is HW

4 ×
HW

4 .
3. The probability map is multiplied by σ(X1) to generate the spatial recalibrated feature

of X1. The spatial recalibrated feature of X2 is generated in the same way. Further,
the operation O resizes the spatial recalibrated feature of X1 to C′ × H ×W, while
the combined operation θ deploys a deconvolution layer to upsample the spatial
recalibrated feature of X2 and then resize it to C′ × H ×W.

Processed by the two branches, the recalibrated feature RF4 is abundant in information
relating to the global spatial relationships and capable of capturing intact semantic content
from coarse-resolution images.

2.3. High-Quality Multi-Scale Representation with DCFFM

We proposed a novel feature aggregation module for abstracting multi-scale geo-
objects from MSR remotely sensed images. Since this novel module utilizes large-field
connections to densely connect the multi-level features, we named it the densely connected
feature fusion module. The main advantage of DCFFM is its ability to capture high-quality
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multi-scale contexts through a weighted fusion of semantic features at different sizes and
receptive fields. The structure of DCFFM is illustrated in the dashed red box of Figure 2.

Large-field connection: To match the structure of the ResNet backbone, we designed
three large-field connections in DCFFM. Each connection contains a 2-D atrous convolution
to generate the corresponding large-field feature (LFi) from the recalibrated feature RF4,
whereafter the stacked transposed convolutions are adopted to control the output size when
necessary. The large-field connection is defined as a function with the following equation:

LFi(RF4) = T3−i
◦
Di(RF4), i ∈ {1, 2, 3} (6)

where i denotes the layer index. T
◦

is a resize function that performs a 2 × 2 transpose
convolution with stride 2 repeatedly, and 3− i denotes the number of repetitions. Di
denotes a 2-D atrous convolution for receptive field enlargement, which can be defined as:

Di(RF4) =
K

∑
k1=1

K

∑
k2=1

RF4[m + fr(i)·k1, n + fr(i)·k2]·w[k1, k2] (7)

where [m, n] and [k1, k2] represent the spatial position indices of the output Di and the
convolution filter w, respectively. Here, K is set to 3. fr(i) denotes the dilated rate of Di,
which can be computed as follows:

fr(i) = 24− 6i (8)

According to the different layer i, three large-field connections could generate three
large-field features with diverse receptive fields and sizes, providing richer multi-scale
contexts for feature fusion.

Weighted fusion: The three generated large-field features are aggregated with the
corresponding ResBlock features and recalibrated features by a weighted element-wise
sum operation to strengthen the generalization capability of fused features, as exhibited in
Figure 2b. The equation is as follows:

RFi =

{
RFi i f i = 4

α1· fµ(RFi+1) + α2· fδ(ResBlocki) + α3·LFi, i f i ∈ {1, 2, 3} (9)

where fµ is a resize operation that unifies the shape of RFi+1 and LFi, while fδ is a standard
1 × 1 convolution that unifies the channels of ResBlocki and LFi. α1, α2, α3 denote the
weight coefficients and always satisfy α1 + α2 + α3 = 1.

Eventually, to capitalize on the benefits provided by spatial relationship enhancement
and high-quality multi-scale representation, we further merged RF1, RF2, RF3, RF4 to
generate the scale-aware feature (SF). The formula is as follows:

SF = RF1 + RF2 + RF3 + RF4 (10)

where the channel dimension of RF1, RF2, RF3, RF4, and the scale-aware feature is 256.

3. Results
3.1. Experimental Settings
3.1.1. Implementation Details

All models in the experiments were implemented with PyTorch framework on a single
NVIDIA GTX 2080ti GPU with a batch size of 4. For fast convergence, we deployed the
AdamW optimizer to train all models in the experiments. The base learning rate was set to
1 × 10−4, and the weight decay value was 0.01. The early stopping technique was applied
to control the training time for preventing overfitting. Cross-entropy loss was chosen as
the loss function. Please note that only scale-invariant image transformation (random flip)
was used for data augmentation to avoid the influence of the scale variations.
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3.1.2. Models for Comparison

To test the cross-resolution generalization capability of the proposed SaNet, we se-
lected various competitive methods for comparison, including multi-scale feature ag-
gregation models such as the feature pyramid network (FPN) [37] and pyramid scene
network (PSPNet) [39], the multi-view context aggregation method Deeplabv3+ [41] and
the criss-cross attention network (CCNet) [46], as well as specially designed models for
semantic labelling of remotely sensed images, such as relational context-aware fully con-
volutional network (S-RA-FCN) [47], the dense dilated convolutions merging network
(DDCM-Net) [43], edge-aware neural network (EaNet) [44], MACUNet [48] and MARe-
sUNet [49]. Besides, ablation studies were conducted with the following model design:

(1) Baseline: An upsampling operation was employed on top of the backbone to construct
the single-scale network Baseline. The feature maps produced by the Baseline are
restored directly to the same size as the original input image.

(2) Baseline + SRM and Baseline + SFRM: The spatial relationship module (SRM) [47]
and our SFRM were added into the Baseline to construct two spatial relationship
networks (i.e., Baseline + SRM and Baseline + SFRM).

(3) Baseline + FPN and Baseline + DCFFM: The FPN module [37] and our DCFFM were
embedded into the Baseline to construct two multi-scale networks (i.e., Baseline +
FPN and Baseline + DCFFM).

3.1.3. Evaluation Metrics

The performance of the proposed method was evaluated by the F1 score and overall
accuracy, which can be calculated based on an accumulated confusion matrix:

precision =
1
k

k

∑
c=1

TPc

TPc + FPc
(11)

recall =
1
k

k

∑
c=1

TPc

TPc + FNc
(12)

F1 = 2× precison× recall
precision + recall

(13)

OA =
∑k

c=1 TPc

N
(14)

mIoU =
1
k

k

∑
c=1

TPc

TPc + FPc + FNc
(15)

where c represents the index of the class and k denotes the number of classes. TPc , TNc , FPc
and FNc indicate samples of true positives, true negatives, false positives and false nega-
tives of class c, respectively. N is the total number of pixels in all classes.

3.2. Experiments I: Results on the LandCover.ai Dataset

LandCover.ai is a large-scale multi-resolution aerial imagery dataset for semantic
segmentation [50], which collects true orthophoto RGB image tiles of 216.27 km2 rural
areas across Poland (a medium-sized country in Central Europe) under various optical and
seasonal conditions. There are 33 image tiles (ca. 9000 × 9500 px) with a spatial resolution
of 0.25 m and 8 image tiles (ca. 4200 × 4700 px) with a spatial resolution of 0.5 m, covering
176.76 km2 and 39.51 km2, respectively. The image tiles were manually annotated into four
classes of geospatial objects, including water, building, woodland and background.

In our experiments, the 33 image tiles with a spatial resolution of 0.25 m were randomly
split into a training set (70%) and a validation set (30%). The eight image tiles with a spatial
resolution of 0.5 m were chosen as the test set. All image tiles are cropped into 512 × 512 px
patches. The training iteration was set as 5 K.
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3.2.1. Ablation Study on the LandCover.ai Dataset

To evaluate the performance of the SFRM and DCFFM modules separately in the
semantic mapping of MSR aerial images, we choose ResNet101 as the backbone and
conduct ablation experiments.

Ablation study for the spatial feature recalibration module: Due to the diversity in spatial
resolution, a certain gap exists between the validation set and the test set (Table 1). Notably,
with the employment of SRM and SFRM, the average mIoU increased by 8.6% and 10.4%,
and the gap of mIoU reduced by 6% and 8.6%, compared to the Baseline. The lower gap
indicates the stronger adaptivity of the model to spatial resolution. These results not only
suggest that modelling spatial relationships could enhance the feature representation of
coarse-resolution images but also show the superiority of our SFRM.

Table 1. Ablation study for the SFRM and DCFFM. The backbone is ResNet101. The spatial resolution
of the validation set and test set are 0.25 and 0.5 m, respectively. The values in bold are the best.

Method
mIoU

Avg Gap
Val Set (0.25 m) Test Set (0.5 m)

Baseline 79.7 62.3 71.0 17.4
Baseline + SRM 85.3 73.9 79.6 11.4

Baseline + SFRM 85.8 77.0 81.4 8.8
Baseline + FPN (FPN) 84.7 72.3 78.5 12.4

Baseline + DCFFM 86.2 78.0 82.1 8.2
Baseline + SFRM +

DCFFM (SaNet) 88.2 81.2 84.7 7.0

Ablation study for densely connected feature fusion module: As illustrated in Table 1,
the deployment of FPN and DCFFM produces higher average mIoU scores (78.5% and
82.1%) and smaller gaps (12.4% and 8.2%), compared to the Baseline (71.0% and 17.4%),
demonstrating the effectiveness of multi-scale representation for the semantic labelling of
MSR images as well as the advantage of DCFFM.

The proposed SaNet maintained the highest average mIoU and the lowest gap, prof-
iting from the simultaneous employment of SFRM and DCFFM. For a comprehensive
comparison, the effectiveness and superiority of SFRM and DCFFM are shown in Figure 3.
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3.2.2. Comparison with State-of-the-Art Models

To further test the proposed SaNet for cross-resolution segmentation, state-of-the-art
models were selected for comparison. The experimental results demonstrate that our SaNet
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maintained the highest average F1 score (93.5%) on the validation set (Table 2). Most
importantly, the proposed SaNet still achieved the top mean F1 score (89.1%) on the test set,
despite the coarser spatial resolution (Table 3). The highest average F1 score and the lowest
gap of F1 score also demonstrate the greater generalization capability of our SaNet in cross-
resolution segmentation (Figure 4). Besides, the proposed SaNet achieved an F1-building
score that was at least 5.5% higher than other methods in the test set (Table 3). It segmented
buildings accurately, whereas other benchmark approaches depicted coarse-structured and
incomplete buildings (Figure 5).

Table 2. Quantitative comparison with state-of-the-art models on the validation set. The spatial resolution is 0.25 m. The
best values are in bold.

Method Backbone
F1-Score Mean

F1-ScoreWater Building Woodland Background

PSPNet ResNet101 95.9 78.9 94.7 96.6 91.5
Deeplabv3+ ResNet101 96.3 82.8 94.4 96.5 92.5

CCNet ResNet101 95.9 80.8 94.7 96.5 92.0
SRAFCN VGG16 96.4 83.1 94.4 96.6 92.6

DDCM-Net ResNet101 96.9 84.4 94.6 96.6 93.2
EaNet ResNet101 96.1 82.5 94.7 96.6 92.5

MACUNet UNet 95.7 82.2 94.3 96.5 92.2
MAResUNet UNet 96.0 82.7 94.4 96.6 92.4

SaNet ResNet101 96.3 86.3 94.8 96.7 93.5

Table 3. Quantitative comparison with state-of-the-art models on the test set. The spatial resolution
is 0.5 m. The best values are in bold.

Method Backbone
F1-Score Mean

F1-ScoreWater Building Woodland Background

PSPNet ResNet101 97.2 52.3 90.8 88.7 82.3
Deeplabv3+ ResNet101 96.8 67.8 90.9 88.6 86.0

CCNet ResNet101 97.2 58.2 91.4 89.1 84.0
SRAFCN VGG16 96.4 67.2 91.1 88.6 85.8

DDCM-Net ResNet101 97.1 64.1 91.0 88.9 85.3
EaNet ResNet101 96.9 68.9 92.1 89.8 86.9

MACUNet UNet 96.5 67.1 89.2 86.9 84.9
MAResUNet UNet 97.4 70.1 89.1 87.3 86.0

SaNet ResNet101 96.6 75.6 93.3 90.8 89.1
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3.3. Experiments II: Results on the MSR Vaihingen Dataset
3.3.1. MSR Vaihingen Dataset

The Vaihingen dataset consists of 33 very fine spatial resolution TOP image tiles at an
average size of 2494 × 2064 pixels. Each TOP image tile has three multispectral bands (near
infrared, red, green) as well as the digital surface model (DSM) and the normalized digital
surface model (NDSM) with a 9-cm ground sampling distance (GSD). Only TOP image
tiles were used in our experiments without DSM. The dataset involved five foreground
classes (impervious surface, building, low vegetation, tree, car) and one background class
(clutter). Following the recommendation of the previous work [43], 16 image tiles were
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selected as the training set and the remaining 17 image tiles were chosen as the original
Vaihingen test set.

We built the MSR Vaihingen dataset particularly to assess the performance of SaNet at
a wider variety of spatial resolutions. Specifically, we first resized the image tiles of the
original Vaihingen test set to 0.75 times their original size using the bilinear interpolation,
then cropped them into 512 × 512 px patches to generate the 0.75× Vaihingen test set. For
the labels, we resized them using the nearest interpolation. The 0.5× and 0.25× Vaihingen
test sets were produced in the same fashion. The training set was cropped into 512 × 512 px
patches directly, and the training iteration was set as 2.5 K. The data details are listed
in Table 4.

Table 4. Details of the MSR Vaihingen dataset.

Dataset Spatial Resolution (cm) Patch Size (pixels) Patch Numbers

Train set 9 512 × 512 1092
Original test set 9 512 × 512 398

0.75× test set 12 512 × 512 230
0.5× test set 18 512 × 512 113

0.25× test set 36 512 × 512 38

3.3.2. Ablation Study on the MSR Vaihingen Dataset

To evaluate the performance of the SFRM and DCFFM at more diverse spatial resolu-
tions, we choose ResNet101 as the backbone and conducted ablation experiments on the
MSR Vaihingen dataset.

Ablation study for densely connected feature fusion module: As listed in Table 5, compared
to Baseline, the utilization of FPN and DCFFM produced a significant increase in the mean
OA (3.4% and 4.0%), which demonstrates the validity of multi-scale representation and the
superiority of our DCFFM in comparison with FPN.

Table 5. Ablation study for the SFRM module and DCFFM module. The backbone is ResNet101.
Original, 0.75×, 0.5× and 0.25× represent the four Vaihingen test sets in Table 4.

Method
OA

Mean OA
Original 0.75× 0.5× 0.25×

Baseline 88.3 82.9 76.2 59.6 76.8
Baseline + FPN (FPN) 89.6 85.5 80.3 65.2 80.2

Baseline + DCFFM 89.8 86.0 81.0 66.2 80.8
Baseline + SRM 89.7 85.6 80.6 67.0 80.7

Baseline + SFRM 90.2 85.9 81.3 69.8 81.8
Baseline + SFRM +

DCFFM (SaNet) 91.0 87.1 83.1 72.5 83.4

Ablation study for the spatial feature recalibration module: With the application of SRM
and SFRM, the mean OA increased by 3.9% and 5.0%, respectively, compared to Baseline
(Table 5). Particularly, Baseline + SFRM outperformed Baseline by 10.2% and exceeded
Baseline + SRM by 2.8% on the 0.25× Vaihingen test set. These results suggest that
enhancing information on the global spatial relationship could strengthen the adaptability
of the network to MSR images. The significant increase in accuracy demonstrates the
advantage of our SFRM in modelling spatial relationships. Moreover, by combining
DCFFM and SFRM, our SaNet maintained the highest OA of the four Vaihingen test sets.

3.3.3. Comparison with Other Models

To further test the proposed SaNet for cross-resolution segmentation, we choose
ResNet101 as the backbone network and compared SaNet with other excellent models
in the four Vaihingen test sets. Baseline + SRM was also selected for comparison as
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a competitive spatial relationship network. The experimental results demonstrate that
the proposed SaNet outperformed other models in both mean F1 score (77.4%) and OA
(83.4%) (Table 6). Specifically, SaNet increased the average OA by 6.6%, 2.7% and 2.6%
in comparison with Baseline, Baseline + SRM and Deeplabv3+, respectively. Meanwhile,
SaNet produceed increments of 2.4% and 2.0% in the average F1 score compared with
DDCM-Net and EaNet.

Table 6. Quantitative comparison on the four Vaihingen test sets. The backbone is ResNet101. The values in bold are
the best.

Method
F1-Score OA Mean

F1-Score
Mean

OAOriginal 0.75× 0.5× 0.25× Original 0.75× 0.5× 0.25×
Baseline 84.9 76.4 65.9 48.2 88.3 82.9 76.2 59.6 68.9 76.8

Baseline + SRM 87.7 80.6 70.3 53.6 89.7 85.6 80.6 67.0 73.1 80.7
FPN 88.0 81.7 72.1 53.3 89.6 85.5 80.3 65.2 73.8 80.2

PSPNet 87.0 79.8 69.9 52.3 89.6 85.2 79.6 64.8 72.3 79.8
Deeplabv3+ 88.7 81.8 72.5 54.0 90.1 85.8 80.9 66.5 74.3 80.8
DDCM-Net 89.6 82.0 72.4 55.9 90.6 86.0 81.4 68.6 75.0 81.7

EaNet 89.8 82.6 73.4 55.9 90.7 86.1 81.2 68.0 75.4 81.5

SaNet (ours) 90.3 84.3 75.9 59.2 91.0 87.1 83.1 72.5 77.4 83.4

With decreased spatial resolution, Baseline with a single-scale representation declined
at the fastest rate, as shown in Figure 6a, followed by the current multi-scale representation
networks FPN, PSPNet and Deeplabv3+ as well as the spatial relationship network Baseline
+ SRM and the specially designed networks DDCM-Net and EaNet. In contrast, the
accuracy of SaNet reduced at the slowest rate. The OA secants (dashed lines) in Figure 6b
represent the declining magnitude of the OA when the spatial resolution decreased from
the original resolution to 0.25×. The proposed SaNet produced the smallest rate of decline.
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As shown in Figure 7, the proposed SaNet achieved the most accurate segmentation
maps compared with other methods. Particularly, the semantic content of the impervious
surface was characterized effectively. Meanwhile, the complex contour of buildings was
preserved completely in the 0.25× image.
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3.4. Experiments III: Results on the MSR Potsdam Dataset
3.4.1. MSR Potsdam Dataset

The Potsdam dataset contains 38 very fine resolution TOP image tiles (GSD 5 cm) at a
size of 6000 × 6000 pixels and involves the same category information as the Vaihingen
dataset. Four multispectral bands (red, green, blue and near infrared), as well as DSM and
NDSM, were provided in the dataset. The 24 image tiles were chosen as the training set,
and the remaining tiles were selected as the original Potsdam test set. We only used TOP
image tiles with three multispectral bands (near infrared, red, green) in the experiments,
and the training iteration was set as 2.5 K. Notably, we created the MSR Potsdam dataset
using the same strategy as the MSR Vaihingen dataset, as listed in Table 7.

Table 7. Details of the MSR Potsdam dataset.

Dataset Spatial Resolution (cm) Patch Size (Pixels) Patch Numbers

Train set 5 512 × 512 3456
Original test set 5 512 × 512 2016

0.75× test set 6.67 512 × 512 1134
0.5× test set 10 512 × 512 504

0.25× test set 20 512 × 512 126

3.4.2. Comparison with Other Models

The MSR Potsdam dataset is larger than the MSR Vaihingen dataset and more complex
in terms of spatial details. We carried out comprehensive experiments on the four Potsdam
test sets in Table 7 to test the multi-resolution generalization capability of SaNet. Despite
the intricate details in the images, our SaNet maintained superiority in both the mean
F1 score (80.4%) and mean OA (83.4%) (Table 8). Particularly, SaNet exceeded all multi-
scale contextual information aggregation methods, including Deeplabv3+, DDCM-Net and
EaNet, by 3.3%, 2.3% and 2.2% in mean OA. For the 0.25× Potsdam test set, our SaNet
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delivered a respectable OA (69.7%) and F1 score (58.4%), outperforming the sub-optimal
model EaNet by a large margin of 3.0% in the F1 score. The above-mentioned accuracy
demonstrates the effectiveness and robustness of our SaNet for the semantic labelling of
MSR remotely sensed images. Moreover, SaNet yielded the smallest declining magnitude
(Figure 8a) and achieved the most gentle rate of decline in accuracy with coarse spatial
resolution (Figure 8b).

Table 8. Quantitative comparison on the four Potsdam test sets. The backbone is ResNet101. The values in bold are the best.

Method
F1-Score OA Mean

F1-Score
Mean

OAOriginal 0.75× 0.5× 0.25× Original 0.75× 0.5× 0.25×
Baseline 87.8 82.1 73.5 47.9 86.9 83.5 77.9 58.3 72.8 76.7

Baseline + SRM 90.4 85.4 76.8 55.0 89.2 86.4 81.5 65.6 76.9 80.7
FPN 90.4 85.9 78.0 52.1 88.9 86.2 81.4 63.9 76.6 80.1

PSPNet 90.5 85.2 76.1 52.8 89.5 86.3 80.8 62.0 76.2 79.7
Deeplabv3+ 90.0 85.4 77.8 51.3 88.8 86.1 81.3 64.0 76.1 80.1
DDCM-Net 91.7 87.3 76.4 55.0 90.1 87.2 82.4 64.5 77.6 81.1

EaNet 91.9 87.1 78.8 55.4 90.4 87.2 82.3 65.0 78.3 81.2
SaNet (ours) 92.3 88.3 82.4 58.4 90.9 88.4 84.7 69.7 80.4 83.4
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magnitude when spatial resolution decreased from the original resolution to 0.25×.

The segmentation results are shown in Figure 9, where regions with obvious improve-
ment are marked by red boxes. The proposed SaNet with DCFFM and SFRM exhibited
the smoothest visual appearance with the least red clutter noise, as shown in the first
row of Figure 9. Labelled buildings with scale-aware features extracted by SaNet better
represent the complete object. For example, SaNet recognized the complete, regular shape
of the main building as shown in the second row of Figure 9, where other methods drew
the building as an incomplete and irregular semantic object due to the interference of the
impervious surface. In the 0.25× image, SaNet represents the geometries of two adjacent
buildings in the red box region effectively, whereas other approaches identify them as
a single object (fourth row of Figure 9). Meanwhile, small objects such as cars are also
identified accurately in the third row of Figure 9.
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4. Discussion
4.1. Influence of Multiple Spatial Resolutions

Multiple spatial resolutions (MSR) in remotely sensed imagery lead to several chal-
lenges to the existing semantic segmentation methods. Through extensive experiments, in
this research, we discuss the influence of coarse spatial resolution in detail.

Biased segmentation between large and small objects: As the spatial resolution becomes
coarse, geo-objects with diverse sizes (small and large) are segmented differently. As
illustrated in Tables 2 and 3, large geo-objects (e.g., water, woodland) suffer slightly in
performance, whereas small objects (e.g., building) are influenced significantly.

Coarse object boundary: In urban scenarios, geo-objects located adjacently often present
visually similar characteristics, which could lead to inaccurate segmentation results of the
object boundary. Such a negative effect is becoming severe with detailed information loss
in coarse resolution images. As illustrated in Figures 7 and 9, the boundary of buildings is
easily confused with adjacent buildings at 0.25× spatial resolution.

4.2. Discussion of Scale-Aware Feature Representation

The comprehensive experiments demonstrate the superiority of our scale-aware fea-
ture representation for the semantic segmentation of MSR remotely sensed images. Three
vital factors ensure the competitive accuracies of our method. First, the proposed SFRM
module models the invariant global spatial relationships to alleviate the contradiction
between intact semantic content extraction and detailed information loss at coarse spatial
resolutions. Commonly, a single-branched structure is used to capture the global spatial
relationships of the networks. However, such an approach demonstrates weak adaptability
to MSR images due to the fixed size of the branch feature. By contrast, our SFRM employs
a dual-branched structure, where the global spatial relationships are modelled at different
scales to adapt to the multi-resolution patterns. Second, the proposed DCFFM resolves
the imbalanced segmentation quality of large and small objects. Traditional FPN fuses the
high-level semantic features and low-level detailed features to capture multi-scale contexts.
Although this can reduce the negative impact brought by the scale variation of geo-objects,
the limited receptive field of extracted features severely restricts its representation capabil-
ity in MSR images. Nevertheless, our DCFFM creates three large-field connections to enrich
the receptive field of semantic features, providing high-quality multi-scale contextual infor-
mation. Moreover, our DCFFM employs weighted operations to aggregate multi-layer and
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multi-view features instead of fusing features directly, ensuring the generalization of the
fused features. Third, building on the advantages of SFRM and DCFFM, our SaNet can
capture the scale-aware feature for the robust semantic segmentation of MSR images with
the highest accuracy of all benchmark approaches.

4.3. Application Scenarios and Model Efficiency

The main application scenario of the proposed method was multi-scale geo-object
segmentation in MSR remotely sensed images, which can be applied to satellite sensors,
aerial images and UAV drones captured at multiple scales. The reasons are: (1) With
the advancement of sensor technology, remote sensing images are acquired at multiple
resolutions at every point of the earth. (2) Geo-objects within multi-resolution images are
presented with a large variation in size and geometry. By learning scale-aware feature
representation, our SaNet could pay equal attention to multi-scale objects, thereby seg-
menting geo-objects with complete and fine boundaries, demonstrating high accuracy and
utility in such application scenarios. However, the computational cost of the combination
of DCFFM and SFRM increased in SaNet, with inevitably reduced computational efficiency.
Our future research will, therefore, be devoted to designing an efficient and lightweight
deep network to extract scale-aware features from MSR remotely sensed imagery.

5. Conclusions

Multi-resolution semantic segmentation is a challenging task due to the large variation
in different objects and the information loss of fine details in multi-resolution images. In
this research, we present a scale-aware neural network for the robust segmentation of
multi-resolution remotely sensed images using two novel modules, including a spatial
feature recalibration module and a densely connected feature fusion module. Ablation
studies indicate that both multi-scale representation and spatial relationship enhancement
could increase the adaptability of the network to multi-resolution images. The proposed
spatial feature recalibration module demonstrates superiority in characterizing spatial
relationships of the network compared to the spatial relation module, whereas the pro-
posed densely connected feature fusion module captured high-quality multi-scale semantic
information by merging various features. The combination of the densely connected fea-
ture fusion module and the spatial feature recalibration module increased classification
accuracy by learning scale-aware feature representation. Extensive experiments on three
multi-resolution datasets demonstrated the strong cross-resolution generalization capa-
bility of our SaNet compared with state-of-the-art benchmark approaches. Moreover, the
proposed spatial feature recalibration module and densely connected feature fusion mod-
ule can be easily deployed and transplanted into other FCN-based segmentation networks
for the precise segmentation of multi-resolution images automatically.
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